Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nucleic Acids Res ; 49(W1): W336-W345, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34048582

ABSTRACT

With the continuing rise of lipidomic studies, there is an urgent need for a useful and comprehensive tool to facilitate lipidomic data analysis. The most important features making lipids different from general metabolites are their various characteristics, including their lipid classes, double bonds, chain lengths, etc. Based on these characteristics, lipid species can be classified into different categories and, more interestingly, exert specific biological functions in a group. In an effort to simplify lipidomic analysis workflows and enhance the exploration of lipid characteristics, we have developed a highly flexible and user-friendly web server called LipidSig. It consists of five sections, namely, Profiling, Differential Expression, Correlation, Network and Machine Learning, and evaluates lipid effects on cellular or disease phenotypes. One of the specialties of LipidSig is the conversion between lipid species and characteristics according to a user-defined characteristics table. This function allows for efficient data mining for both individual lipids and subgroups of characteristics. To expand the server's practical utility, we also provide analyses focusing on fatty acid properties and multiple characteristics. In summary, LipidSig is expected to help users identify significant lipid-related features and to advance the field of lipid biology. The LipidSig webserver is freely available at http://chenglab.cmu.edu.tw/lipidsig.


Subject(s)
Lipidomics/methods , Software , Animals , Biomarkers , Data Mining , Fatty Acids/chemistry , Ferroptosis , Internet , Lipid Metabolism , Lipids/chemistry , Machine Learning , Mice , Neoplasms/metabolism
2.
Int J Mol Sci ; 23(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35163790

ABSTRACT

Aurora A kinase (Aurora A) is a serine/threonine kinase regulating control of multiple events during cell-cycle progression. Playing roles in promoting proliferation and inhibiting cell death in cancer cells leads Aurora A to become a target for cancer therapy. It is overexpressed and associated with a poor prognosis in ovarian cancer. Improving cisplatin therapy outcomes remains an important issue for advanced-stage ovarian cancer treatment, and Aurora A inhibitors may improve it. In the present study, we identified natural compounds with higher docking scores than the known Aurora A ligand through structure-based virtual screening, including the natural compound fangchinoline, which has been associated with anticancer activities but not yet investigated in ovarian cancer. The binding and inhibition of Aurora A by fangchinoline were verified using cellular thermal shift and enzyme activity assays. Fangchinoline reduced viability and proliferation in ovarian cancer cell lines. Combination fangchinoline and cisplatin treatment enhanced cisplatin-DNA adduct levels, and the combination index revealed synergistic effects on cell viability. An in vivo study showed that fangchinoline significantly enhanced cisplatin therapeutic effects in OVCAR-3 ovarian cancer-bearing mice. Fangchinoline may inhibit tumor growth and enhance cisplatin therapy in ovarian cancer. This study reveals a novel Aurora A inhibitor, fangchinoline, as a potentially viable adjuvant for ovarian cancer therapy.


Subject(s)
Aurora Kinase A/metabolism , Benzylisoquinolines/administration & dosage , Cisplatin/administration & dosage , DNA Adducts/drug effects , Ovarian Neoplasms/drug therapy , Animals , Aurora Kinase A/chemistry , Benzylisoquinolines/chemistry , Benzylisoquinolines/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Models, Molecular , Molecular Docking Simulation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Conformation , Xenograft Model Antitumor Assays
3.
Mar Drugs ; 19(3)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809638

ABSTRACT

Surgical wounds are common injuries of skin and tissues and usually become a clinical problem. Until now, various synthetic and natural peptides have been widely explored as potential drug candidates for wound healing. Inhibition of the TNF-α signaling pathway and promotion of angiogenesis are suggested to be involved in their effects. Angiogenesis at the wound site is one of the essential requisites for rapid healing. In the present study, a novel peptide extract derived from the natural source Lates calcarifer, commonly known as sea bass or barramundi, was evaluated for its wound healing property. The specific acidic and enzymatic approaches were employed for producing sea bass extract containing small size peptides (molecular weight ranging from 1 kD to 5 kD). The cytotoxicity of the extract was examined in HaCaT and NIH3T3. After this, the effects of enzyme digested peptide extracts of sea bass on wound healing in mice were investigated. The peptide extracts (660 and 1320 mg/kg/day) and control protein (1320 mg/kg/day) was orally given to the wounded mice, respectively, for 12 days. The surgical method was improved by implanting a silicone ring at the wound site. The ring avoided the contracting effect in murine wounds, making it more closely related to a clinical condition. The results showed promising improvement at the wound site in mice. Sea bass peptide extracts accelerated the wound healing process and enhanced the microvessel formation at the wound site. The remarkable effects of this novel sea bass peptide extract in healing traumatic injuries revealed a new option for developing wound management.


Subject(s)
Bass/metabolism , Peptides/pharmacology , Surgical Wound/drug therapy , Wound Healing/drug effects , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Enzymes/metabolism , HaCaT Cells , Humans , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Peptides/isolation & purification , Peptides/metabolism , Surgical Wound/pathology , Tissue Extracts/isolation & purification , Tissue Extracts/metabolism , Tissue Extracts/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200731

ABSTRACT

A highly diastereoselective method for the synthesis of novel spiro-tetrahydroquinoline derivatives is reported here, using a one-pot reaction method. All compounds were characterized by 1H-nuclear magnetic resonance (NMR) and mass spectroscopy, and their stereo configurations were confirmed by X-ray analysis. These activities of these derivatives were then tested in human keratocyte cells. The responses of cells to treatment with selected compounds were studied using scratch analysis, and the compounds were tested in a mouse excision wound model. Three of the derivatives demonstrated significant wound-healing activities.


Subject(s)
Keratinocytes/drug effects , Quinolines/chemistry , Spiro Compounds/pharmacology , Wound Healing/drug effects , Animals , Humans , Keratinocytes/cytology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Spiro Compounds/chemistry , Stereoisomerism
5.
J Cell Mol Med ; 24(13): 7187-7200, 2020 07.
Article in English | MEDLINE | ID: mdl-32543783

ABSTRACT

This study aims to explore lipidic mechanism towards low-density lipoprotein receptor (LDLR)-mediated platinum chemotherapy resistance. By using the lipid profiling technology, LDLR knockdown was found to increase lysosomal lipids and decrease membranous lipid levels in EOC cells. LDLR knockdown also down-regulated ether-linked phosphatidylethanolamine (PE-O, lysosomes or peroxisomes) and up-regulated lysophosphatidylcholine [LPC, lipid droplet (LD)]. This implies that the manner of using Lands cycle (conversion of lysophospholipids) for LDs might affect cisplatin sensitivity. The bioinformatics analyses illustrated that LDLR-related lipid entry into LD, rather than an endogenous lipid resource (eg Kennedy pathway), controls the EOC prognosis of platinum chemotherapy patients. Moreover, LDLR knockdown increased the number of platinum-DNA adducts and reduced the LD platinum amount. By using a manufactured LPC-liposome-cisplatin (LLC) drug, the number of platinum-DNA adducts increased significantly in LLC-treated insensitive cells. Moreover, the cisplatin content in LDs increased upon LLC treatment. Furthermore, lipid profiles of 22 carcinoma cells with differential cisplatin sensitivity (9 sensitive vs 13 insensitive) were acquired. These profiles revealed low storage lipid levels in insensitive cells. This result recommends that LD lipidome might be a common pathway in multiple cancers for platinum sensitivity in EOC. Finally, LLC suppressed both cisplatin-insensitive human carcinoma cell training and testing sets. Thus, LDLR-platinum insensitivity can be due to a defective Lands cycle that hinders LPC production in LDs. Using lipidome assessment with the newly formulated LLC can be a promising cancer chemotherapy method.


Subject(s)
Cisplatin/therapeutic use , Lipid Droplets/metabolism , Lysophosphatidylcholines/metabolism , Animals , Cell Line, Tumor , Cisplatin/pharmacology , Female , Humans , Lipidomics , Liposomes , Mice, Nude , Models, Biological , Receptors, LDL/metabolism
6.
Toxicol Appl Pharmacol ; 402: 115129, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32673656

ABSTRACT

Urothelial carcinoma (UC) is one of the highest incidence cancers that rank the fourth commonly diagnosed tumors worldwide. The unresectable lesions that are resistant to therapeutic interventions is the major cause leading to death. Previous studies had shown that the resistance and metastatic consequence may arise from cancer stem-like cells population. The phytochemical flavonoids have promised bioactivity and potent anti-carcinogenic effects, and trap great attentions for cancer chemoprevention and/or adjuvant chemotherapy. However, the mechanisms of flavonoids on cancer stemness is still obscured. In this study, we analyzed the biofunctional effects of as-prepared flavonoid derivative-WYC0209 on T24, BFTC905 and BFTC909 human UC cell lines. Our results demonstrated that WYC0209 significantly induced anti-cell viability on UC cells through decreased Akt/NFkB signaling. Moreover, WYC0209 enhanced the cell apoptosis through activated the caspase-3 activity and inactivated Bcl-xL expression. Interestingly, WYC0209 dramatically inhibited the cancer stem cells (CSCs) traits, including attenuation of side population and tumorsphere formation in which were through declined EMT-CSCs markers including MDR1, ABCG2 and BMI-1. We further validated the effects of WYC0209 on several CSC surface markers including CD133, CD44, SOX-2 and Nanog. Our results showed that WYC0209 markedly inhibited CD133 expressions in both transcriptional and translational levels. High expression levels of CD133 was also demonstrated in human upper tract UC specimens. In summary, our study showed that WYC0209 may potentially as an adjuvant agent to against CD133-driven UC CSCs and provide a beneficial strategy to against UC cancer therapeutics resistant.


Subject(s)
AC133 Antigen/metabolism , Cyclohexanones/pharmacology , Flavones/pharmacology , Neoplastic Stem Cells/drug effects , Urothelium/cytology , AC133 Antigen/genetics , Biomarkers, Tumor , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chemotherapy, Adjuvant , Cyclohexanones/chemistry , Flavones/chemistry , Humans , Molecular Structure , Retrospective Studies , Urinary Bladder Neoplasms
7.
J Cell Mol Med ; 23(11): 7417-7426, 2019 11.
Article in English | MEDLINE | ID: mdl-31557413

ABSTRACT

CYP19A1/aromatase (Ar) is a prognostic biomarker of gastric cancer (GCa). Ar is a critical enzyme for converting androstenedione to oestradiol in the steroidogenesis cascade. For decades, Ar has been targeted with Ar inhibitors (ARIs) in gynaecologic malignancies; however, it is unexplored in GCa. A single-cohort tissue microarray examination was conducted to study the association between Ar expression and disease outcome in Asian patients with GCa. The results revealed that Ar was a prognostic promoter. Bioinformatics analyses conducted on a Caucasian-based cDNA microarray databank showed Ar to be positively associated with GCa prognosis for multiple clinical modalities, including surgery, 5-Fluorouracil (5-FU) for adjuvant chemotherapy, or HER2 positivity. These findings imply that targeting Ar expression exhibits a potential for fulfilling unmet medical needs. Hence, Ar-targeting compounds were tested, and the results showed that exemestane exhibited superior cancer-suppressing efficacy to other ARIs. In addition, exemestane down-regulated Ar expression. Ablating Ar abundance with short hairpin (sh)Ar could also suppress GCa cell growth, and adding 5-FU could facilitate this effect. Notably, adding oestradiol could not prevent exemestane or shAr effects, implicating a nonenzymatic mechanism of Ar in cancer growth. Regarding translational research, treatment with exemestane alone exhibited tumour suppression efficacy in a dose-dependent manner. Combining subminimal doses of 5-FU and exemestane exerted an excellent tumour suppression effect without influencing bodyweight. This study validated the therapeutic potentials of exemestane in GCa. Combination of metronomic 5-FU and exemestane for GCa therapy is recommended.


Subject(s)
Androstadienes/therapeutic use , Antineoplastic Agents/therapeutic use , Aromatase Inhibitors/therapeutic use , Stomach Neoplasms/drug therapy , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Female , Fluorouracil/therapeutic use , Humans , Male , Middle Aged , Prognosis , Receptors, Estrogen/metabolism , Stomach Neoplasms/metabolism
8.
Mar Drugs ; 16(6)2018 Jun 10.
Article in English | MEDLINE | ID: mdl-29890785

ABSTRACT

Heteronemin, a marine sesterterpenoid-type natural product, possesses diverse bioactivities, especially antitumor effect. Accumulating evidence shows that heteronemin may act as a potent anticancer agent in clinical therapy. To fully understand the antitumor mechanism of heteronemin, we further explored the precise molecular targets in prostate cancer cells. Initially, heteronemin exhibited potent cytotoxic effect against LNcap and PC3 prostate cancer cells with IC50 1.4 and 2.7 μM after 24 h, respectively. In the xenograft animal model, the tumor size was significantly suppressed to about 51.9% in the heteronemin-treated group in comparison with the control group with no significant difference in the mice body weights. In addition, the results of a cell-free system assay indicated that heteronemin could act as topoisomerase II (topo II) catalytic inhibitor through the elimination of essential enzymatic activity of topoisomerase IIα expression. We found that the use of heteronemin-triggered apoptosis by 20.1⁻68.3%, caused disruption of mitochondrial membrane potential (MMP) by 66.9⁻99.1% and promoted calcium release by 1.8-, 2.0-, and 2.1-fold compared with the control group in a dose-dependent manner, as demonstrated by annexin-V/PI, rhodamine 123 and Fluo-3 staining assays, respectively. Moreover, our findings indicated that the pretreatment of LNcap cells with an inhibitor of protein tyrosine phosphatase (PTPi) diminished growth inhibition, oxidative and Endoplasmic Reticulum (ER) stress, as well as activation of Chop/Hsp70 induced by heteronemin, suggesting PTP activation plays a crucial rule in the cytotoxic activity of heteronemin. Using molecular docking analysis, heteronemin exhibited more binding affinity to the N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. Finally, heteronemin promoted autophagy and apoptosis through the inhibition of Hsp 90 and topo II as well as PTP activation in prostate cancer cells. Taken together, these multiple targets present heteronemin as an interesting candidate for its future development as an antiprostatic agent.


Subject(s)
Apoptosis/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Terpenes/pharmacology , Topoisomerase II Inhibitors/pharmacology , Animals , Autophagy/drug effects , Benzoquinones , Cell Line, Tumor , DNA Topoisomerases, Type II/metabolism , Endoplasmic Reticulum Stress/drug effects , Humans , Inhibitory Concentration 50 , Lactams, Macrocyclic , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Nude , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Docking Simulation , Oxidative Stress/drug effects , Prostate/cytology , Protein Binding , Terpenes/therapeutic use , Xenograft Model Antitumor Assays
9.
Environ Toxicol ; 32(11): 2379-2391, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28722353

ABSTRACT

Burning incense to worship deities is a popular religious ritual in large parts of Asia, and is a popular custom affecting more than 1.5 billion adherents. Due to incomplete combustion, burning incense has been well recognized to generate airborne hazards to human health. However, the correlation between burning incense and lung cancer in epidemiological studies remains controversy. Therefore, we speculated that some unknown materials in incense smoke are involved in the initiation or progression of lung cancer. Based on this hypothesis, we identified a major compound auramine O (AuO) from the water-soluble fraction of incense burned condensate using mass spectrometry. AuO is commonly used in incense manufacture as a colorant. Due to thermostable, AuO released from burned incenses becomes an unexpected air pollutant. AuO is classified as a Group 2B chemical by the International Agency of Research on Cancer (IARC), however, the damage of AuO to the respiratory system remains elusive. Our study revealed that AuO has no apparent effect on malignant transformation; but, it dramatically promotes lung cancer malignancy. AuO accumulates in the nucleus and induces the autophagy activity in lung tumor cells. AuO significantly enhances migration and invasive abilities and the in vitro and in vivo stemness features of lung tumor cells through activating the expression of aldehyde dehydrogenase family 1 member A1 (ALDH1A1), and ALDH1A1 knockdown attenuates AuO-induced autophagy activity and blocks AuO-induced lung tumor malignancy. In conclusion, we found that AuO, an ingredient of incense smoke, significantly increases the metastatic abilities and stemness characters of lung tumor cells through the activation of ALDH1A1, which is known to be associated with poor outcome and progression of lung cancer. For public health, reducing or avoiding the use of AuO in incense is recommended.


Subject(s)
Adenocarcinoma/pathology , Air Pollutants/toxicity , Benzophenoneidum/toxicity , Coloring Agents/toxicity , Lung Neoplasms/pathology , Smoke/adverse effects , Adenocarcinoma/chemically induced , Adenocarcinoma of Lung , Air Pollutants/analysis , Air Pollution, Indoor , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Cell Line, Tumor , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Lung Neoplasms/chemically induced , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology , Retinal Dehydrogenase , Smoke/analysis , Spheroids, Cellular/pathology
10.
J Nat Prod ; 79(11): 2805-2813, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27808511

ABSTRACT

Six new and 16 known lanostanoids were isolated from the sclerotia of Poria cocos. The structures of the new isolates were elucidated to be 16α-hydroxy-3-oxo-24-methyllanosta-5,7,9(11),24(31)-tetraen-21-oic acid (1), 3ß,16α,29-trihydroxy-24-methyllanosta-7,9(11),24(31)-trien-21-oic acid (2), 3ß,16α,30-trihydroxy-24-methyllanosta-7,9(11),24(31)-trien-21-oic acid (3), 3ß-acetoxy-16α,24ß-dihydroxylanosta-7,9(11),25-trien-21-oic acid (4), 3ß,16α-dihydroxy-7-oxo-24-methyllanosta-8,24(31)-dien-21-oic acid (5), and 3α,16α-dihydroxy-7-oxo-24-methyllanosta-8,24(31)-dien-21-oic acid (6), based on extensive spectroscopic analyses. The absolute configuration of 4 was determined using Mosher's method. The antiproliferative activity of the isolated compounds (except 3 and 4) was evaluated against four leukemic cell lines (Molt 4, CCRF-CEM, HL 60, and K562). Dehydropachymic acid (9), dehydroeburicoic acid (12), pachymic acid (14), and lanosta-7,9(11),24-trien-21-oic acid (20) exhibited an antiproliferative effect on the CCRF-CEM cancer cell line with IC50 values of 2.7, 6.3, 4.9, and 13.1 µM, respectively. Both dehydropachymic acid (9) and dehydroeburicoic acid (12) showed antiproliferative effects against Molt 4 (IC50 13.8 and 14.3 µM) and HL 60 (IC50 7.3 and 6.0 µM) leukemic cell lines. Primary computational analysis using a chemical global positioning system for natural products (ChemGPS-NP) on the active lanostanoids from P. cocos suggested that targets other than topoisomerases may be involved in the antiproliferative activity.


Subject(s)
Antineoplastic Agents, Phytogenic , Biological Products , Lanosterol/analogs & derivatives , Wolfiporia/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , DNA Topoisomerases/metabolism , Drug Screening Assays, Antitumor , HL-60 Cells , Humans , Inhibitory Concentration 50 , Lanosterol/chemistry , Lanosterol/isolation & purification , Lanosterol/pharmacology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Triterpenes/chemistry , Triterpenes/pharmacology
11.
Mar Drugs ; 13(5): 3132-53, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26006712

ABSTRACT

A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 µg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%-70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%-53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities.


Subject(s)
Apoptosis/drug effects , Benzoquinones/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Histone Deacetylases/metabolism , Oxidative Stress/drug effects , Quinones/pharmacology , Animals , Antigens, Neoplasm , Cell Line, Tumor , Cytochromes c/metabolism , DNA Topoisomerases, Type II , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , K562 Cells , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Nude , Mitochondria/drug effects , Mitochondria/metabolism , NF-kappa B/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism
12.
J Nat Prod ; 77(8): 1770-83, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25036668

ABSTRACT

Eight new spirostanol saponins, macaosides A-H (1-8), and 10 new furostanol saponins, macaosides I-R (9-18), together with six known spirostanol compounds (19-24) were isolated from Solanum macaonense. The structures of the new compounds were determined from their spectroscopic data, and the compounds were tested for in vitro antineutrophilic inflammatory activity. It was found that both immediate inflammation responses including superoxide anion generation and elastase release were significantly inhibited by treatment with compounds 20, 21, and 24 (superoxide anion generation: IC50 7.0, 7.6, 4.0 µM; elastase release: IC50 3.7, 4.4, 1.0 µM, respectively). However, compounds 1 and 4 exhibited effects on the inhibition of elastase release only, with IC50 values of 3.2 and 4.2 µM, respectively, while 19 was active against superoxide anion generation only, with an IC50 value of 6.1 µM. Accordingly, spirostanols may be promising lead compounds for further neutrophilic inflammatory disease studies.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Saponins/isolation & purification , Saponins/pharmacology , Solanum/chemistry , Spirostans/isolation & purification , Spirostans/pharmacology , Anti-Inflammatory Agents/chemistry , Inhibitory Concentration 50 , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pancreatic Elastase/metabolism , Saponins/chemistry , Spirostans/chemistry , Taiwan
13.
Metabolites ; 14(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38393021

ABSTRACT

This study aimed to evaluate the efficacy of Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) in improving body weight, obesity-related outcomes, and lipid profiles of overweight people. Thirty-six overweight participants were randomly assigned to either a probiotic or a placebo group. A placebo powder or L. bulgaricus powder (containing 1 × 108 colony-forming unit (CFU) of the probiotic) was administered daily for 12 weeks. Body composition was determined, and blood tests were performed before and after the intervention. L. bulgaricus supplementation under the present condition did not affect the body weight, fat percentage, or body mass index (BMI) of the participants, while it resulted in a notable decrease in blood triglyceride (TG) levels, which corresponded to a lowering of the TG proportion in the composition of large VLDL (L-XXL sized fractions) and HDL (M and L fractions) in the probiotic-treated group. These results suggest that L. bulgaricus supplementation under the current conditions may not be helpful for losing weight, but it has the potential to decrease blood TG levels by modulating TG accumulation in or transport by VLDL/HDL in obese patients. L. bulgaricus supplements may have health-promoting properties in preventing TG-related diseases in overweight people.

14.
Heliyon ; 10(2): e24438, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312542

ABSTRACT

The present study investigated the potential anti-obesity properties of Citrus depressa Hayata (CDH) juice in HBV transgenic mice, as well as the impact of fermentation on the effectiveness of the juice. The results revealed that fermentation increased the levels of polyphenols and hesperidin in CDH juice. The animal study demonstrated that both juices were effective in mitigating the weight gain induced by a high-fat diet by correcting metabolic parameter imbalances, reducing hepatic lipid accumulation, and reversing hepatic immune suppression. Furthermore, fermented juice exhibited superior efficacy in managing body weight and inhibiting the expansion of white adipose tissue (WAT). Fermented juice significantly enhanced adiponectin production and PPARγ expression in WAT, while also reducing hypertrophy. This study offers valuable insights into the potential role of CDH juices in combating obesity associated with high fat consumption and underscores the promise of CDH juice as a functional beverage.

15.
Mol Oncol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750006

ABSTRACT

Bladder cancer poses a significant challenge to chemotherapy due to its resistance to cisplatin, especially at advanced stages. Understanding the mechanisms behind cisplatin resistance is crucial for improving cancer therapy. The enzyme glutathione S-transferase omega class 1 (GSTO1) is known to be involved in cisplatin resistance in colon cancer. This study focused on its role in cisplatin resistance in bladder cancer. Our analysis of protein expression in bladder cancer cells stimulated by secretions from tumor-associated macrophages (TAMs) showed a significant increase in GSTO1. This prompted further investigation into the role of GSTO1 in bladder cancer. We found a strong correlation between GSTO1 expression and cisplatin resistance. Mechanistically, GSTO1 triggered the release of large extracellular vesicles (EVs) that promoted cisplatin efflux, thereby reducing cisplatin-DNA adduct formation and enhancing cisplatin resistance. Inhibition of EV release effectively counteracted the cisplatin resistance associated with GSTO1. In conclusion, GSTO1-mediated EV release may contribute to cisplatin resistance caused by TAMs in bladder cancer. Strategies to target GSTO1 could potentially improve the efficacy of cisplatin in treating bladder cancer.

16.
Nat Cancer ; 5(3): 400-419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38267627

ABSTRACT

Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here, we identify a disintegrin and metalloproteinase domain (ADAM)9 as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor 1 (PAI-1), which functions as a selective autophagy receptor in conjunction with light chain 3 (LC3), triggering lysosomal degradation of KRAS. Suppression of ADAM9 by a small-molecule inhibitor restricts disease progression in spontaneous models, and combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras) , Cell Proliferation , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Gemcitabine , Membrane Proteins/metabolism , ADAM Proteins/metabolism , ADAM Proteins/therapeutic use
17.
Cancers (Basel) ; 15(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36831555

ABSTRACT

Globally, breast cancer is the most common cause of cancer deaths. In Taiwan, it is the most prevalent cancer among females. Since San-Huang-Xie-Xin-Tang (SHXXT) exerts not only an anti-inflammatory but an immunomodulatory effect, it may act as a potent anti-tumor agent. Herein, the study aimed to explore the influence of SHXXT and its constituents on the mortality rate among breast cancer patients in Taiwan regarding the component effect and the dose-relationship effect. By using the Taiwan National Health Insurance (NHI) Research Database (NHIRD), the study analyzed 5387 breast cancer patients taking Chinese herbal medicine (CHM) and 5387 breast cancer patients not using CHM. CHM means SHXXT and its constituents in the study. The Kaplan-Meier method was utilized to determine the mortality probabilities among patients. Whether the CHM influences the mortality rate among patients was estimated by Cox proportional hazard regression analysis. The use of CHM could lower the cancer mortality rate by 59% in breast cancer patients. The protective effect was parallel to the cumulative days of CHM use and the annual average CHM dose. In addition, the mortality rate was lower in patients who used SHXXT compared to those who only used one of its constituents. SHXXT and its constituents were all promising therapeutic weapons against breast cancer.

18.
Cancer Med ; 11(14): 2824-2835, 2022 07.
Article in English | MEDLINE | ID: mdl-35545835

ABSTRACT

INTRODUCTION: Gastric cancer (GCa) is a malignancy with few effective treatments. Ursolic acid (UA), a bioactive triterpenoid enriched in Hedyotis diffusa Willd, known to suppress GCa without identified target. CYP19A1 (cytochrome P450 family 19A1; also known as aromatase, Ar) was correlated to GCa prognosis. Relatedly, Ar silencers, which halt the expression of Ar exhibited anti-GCa effects in experimental models, are currently being investigated. METHOD: The docking simulation score of UA was compared with Ar inhibitors, e.g., letrozole, exemestane, in Ar protein crystallization. Hedyotis diffusa Willd ethanol extract, UA, or 5-fluracil were applied onto AGS, SC-M1, MKN45 GCa cells for cancer inhibition tests. Immunoblot for measuring gene expressions upon drug treatments, or gene knockdown/overexpression. Treatments were also applied in a MKN45 implantation tumor model. A web-based GCa cohort for Ar expression association with prognosis was performed. RESULT: The ethanol extracts of Hedyotis diffusa Willd, enrich with UA, exhibited cytotoxic activity against GCa cells. Molecular docking simulations with the 3D Ar structure revealed an excellent fitting score for UA. UA increase cytotoxic, and suppressed colony, in addition to its Ar silencing capacity. Moreover, UA synergistically facilitated 5-FU, (a standard GCa treatment) regimen in vitro. Consistent with those results, adding estradiol did not reverse the cancer-suppressing effects of UA, which confirmed UA acts as an Ar silencer. Furthermore, UA exhibited tumor-suppressing index (TSI) score of 90% over a 6-week treatment term when used for single dosing in xenograft tumor model. In the clinical setting, Ar expression was found to be higher in GCa tumors than normal parental tissue from the TCGA (The Cancer Genome Atlas) cohort, while high Ar expression associated with poor prognosis. Together, the results indicate UA could be used to treat GCa by silencing Ar expression in GCa. Hedyotis diffusa Willd ethanol extract could be an functional food supplements.


Subject(s)
Antineoplastic Agents , Aromatase , Hedyotis , Stomach Neoplasms , Triterpenes , Animals , Antineoplastic Agents/pharmacology , Aromatase/genetics , Ethanol , Fluorouracil , Hedyotis/chemistry , Humans , Molecular Docking Simulation , Plant Extracts/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Triterpenes/pharmacology , Ursolic Acid
19.
Chem Biol Drug Des ; 99(1): 126-135, 2022 01.
Article in English | MEDLINE | ID: mdl-34411446

ABSTRACT

Aurora kinase A (AURKA) carries out an essential role in proliferation and involves in cisplatin resistance in various cancer cells. Overexpression of AURKA is associated with the poor prognosis of cancer patients. Thus, AURKA has been considered as a target for cancer therapy. Developing AURKA inhibitors became an important issue in cancer therapy. A natural compound emodin mainly extracted from rhubarbs possesses anti-cancer properties. However, the effect of emodin on AURKA has never been investigated. In the present study, molecular docking analysis indicated that emodin interacts with AURKA protein active site. We also found nine emodin analogues from Key Organic database by using ChemBioFinder software. Among that, one analogue 8L-902 showed a similar anti-cancer effect as emodin. The bindings of emodin and 8L-902 on AURKA protein were confirmed by cellular thermal shift assay. Furthermore, emodin inhibited the AURKA kinase activity in vitro and enhanced the cisplatin-DNA adduct level in a resistant ovarian cancer cell line. It seems that emodin may have the potential to inhibit cancer cell growth and enhance cisplatin therapy in cancer with resistance. Collectively, our finding reveals a novel AURKA inhibitor, emodin, which may be vulnerable to ovarian cancer therapy in the future.


Subject(s)
Anthraquinones/chemistry , Aurora Kinase A/antagonists & inhibitors , Emodin/analogs & derivatives , Protein Kinase Inhibitors/chemistry , Anthraquinones/metabolism , Anthraquinones/pharmacology , Aurora Kinase A/metabolism , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/analysis , Cisplatin/chemistry , Cisplatin/pharmacology , DNA Adducts/analysis , Databases, Chemical , Emodin/metabolism , Emodin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Docking Simulation , Pilot Projects , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Temperature
20.
J Tradit Complement Med ; 12(1): 73-89, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34549024

ABSTRACT

BACKGROUND AND AIM: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through the binding of the viral spike protein with human angiotensin-converting enzyme 2 (ACE2), resulting in the development of coronavirus disease 2019 (COVID-19). To date, few antiviral drugs are available that can effectively block viral infection. This study aimed to identify potential natural products from Taiwan Database of Extracts and Compounds (TDEC) that may prevent the binding of viral spike proteins with human ACE2 proteins. METHODS: The structure-based virtual screening was performed using the AutoDock Vina program within PyRX software, the binding affinities of compounds were verified using isothermal titration calorimetry (ITC), the inhibitions of SARS-CoV-2 viral infection efficacy were examined by lentivirus particles pseudotyped (Vpp) infection assay, and the cell viability was tested by 293T cell in MTT assay. RESULTS AND CONCLUSION: We identified 39 natural products targeting the viral receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in silico. In ITC binding assay, dioscin, celastrol, saikosaponin C, epimedin C, torvoside K, and amentoflavone showed dissociation constant (K d) = 0.468 µM, 1.712 µM, 6.650 µM, 2.86 µM, 3.761 µM and 4.27 µM, respectively. In Vpp infection assay, the compounds have significantly and consistently inhibition with the 50-90% inhibition of viral infection efficacy. In cell viability, torvoside K, epimedin, amentoflavone, and saikosaponin C showed IC50 > 100 µM; dioscin and celastrol showed IC50 = 1.5625 µM and 0.9866 µM, respectively. These natural products may bind to the viral spike protein, preventing SARS-CoV-2 from entering cells. SECTION 1: Natural Products. TAXONOMY CLASSIFICATION BY EVISE: SARS-CoV-2, Structure-Based Virtual Screening, Isothermal Titration Calorimetry and Lentivirus Particles Pseudotyped (Vpp) Infection Assay, in silico and in vitro study.

SELECTION OF CITATIONS
SEARCH DETAIL