Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120603

ABSTRACT

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Subject(s)
Immune Evasion/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Virus Attachment
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34782481

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates membrane fusion to allow entry of the viral genome into host cells. To understand its detailed entry mechanism and develop a specific entry inhibitor, in situ structural information on the SARS-CoV-2 spike protein in different states is urgent. Here, by using cryo-electron tomography, we observed both prefusion and postfusion spikes in ß-propiolactone-inactivated SARS-CoV-2 virions and solved the in situ structure of the postfusion spike at nanometer resolution. Compared to previous reports, the six-helix bundle fusion core, the glycosylation sites, and the location of the transmembrane domain were clearly resolved. We observed oligomerization patterns of the spikes on the viral membrane, likely suggesting a mechanism of fusion pore formation.


Subject(s)
SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Motifs , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Glycosylation , Protein Domains , Protein Multimerization , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
3.
Langmuir ; 37(41): 12112-12117, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34613732

ABSTRACT

Miniaturization of electronic devices down to the nanoscale needs corresponding processing technologies with precision at the atomic layer level. The plasma atomic layer etching (ALE) technique is playing an active role in this demand. However, theoretical research on the ALE mechanism is a great challenge. We propose a method of spontaneously searching adsorption sites (SSASs) to understand what surface chemistry occurs in the ALE processing of MoS2 treated by the remote oxygen plasma. The SSAS results are in good agreement with experimental observations. Chemical adsorption of O atoms occurs only in the topmost layer of the MoS2 surface. The MoS2 surface has four different adsorption sites with different probabilities of binding an O atom, denoted by 0Sbb, 0Sbbc, 2Sbb, and 3Sbb configurations, which have zero, zero, two, and three S-Mo bonds broken by the introduced O atom, respectively. Four adsorption sites of the MoS2 surface play different roles in the surface oxidation in the remote oxygen plasma.

4.
Phys Chem Chem Phys ; 17(43): 29079-84, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26459748

ABSTRACT

Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.


Subject(s)
Titanium/chemistry , Catalysis , Electrons , Light , Photolysis , Surface Properties , Thermodynamics , Water/chemistry
5.
Microbiol Immunol ; 58(7): 398-408, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24845706

ABSTRACT

Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS.


Subject(s)
Circoviridae Infections/prevention & control , Circovirus/genetics , Circovirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Circoviridae Infections/pathology , Circoviridae Infections/virology , Cytokines/blood , Gene Expression , Gene Order , Immunity, Humoral , Immunohistochemistry , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Plasmids/genetics , Recombinant Fusion Proteins/genetics , Swine , Viral Load
6.
Cell Rep ; 43(1): 113653, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38175758

ABSTRACT

Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Broadly Neutralizing Antibodies , Cryoelectron Microscopy , Antibodies, Neutralizing , Epitopes , Antibodies, Viral
7.
Phys Chem Chem Phys ; 15(42): 18523-9, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24072357

ABSTRACT

The advantages of one-dimensional nanostructures, such as excellent charge separation and charge transport, low charge carrier recombination losses and so on, render them the photocatalysts of choice for many applications that exploit solar energy. In this work, based on very recently synthesized ultrathin anatase TiO2 nanowires, we explore the possibility of these wires as photocatalysts for photoelectrochemical water-splitting via the mono-doping (C, N, V, and Cr) and n-p codoping (C&V, C&Cr, N&V, and N&Cr) schemes. Our first-principles calculations predict that the C&Cr and C&V codoped ANWs may be strong candidates for photoelectrochemical water-splitting, because they have a substantially reduced band gap of 2.49 eV, appropriate band edge positions, no carrier recombination centers, and enhanced optical absorption in the visible light region.


Subject(s)
Engineering , Light , Nanowires/chemistry , Photochemical Processes , Titanium/chemistry , Water/chemistry , Absorption , Electrochemistry , Models, Molecular , Molecular Conformation
8.
Nat Commun ; 12(1): 3917, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168138

ABSTRACT

SARS-CoV-2 carries the largest single-stranded RNA genome and is the causal pathogen of the ongoing COVID-19 pandemic. How the SARS-CoV-2 RNA genome is folded in the virion remains unknown. To fill the knowledge gap and facilitate structure-based drug development, we develop a virion RNA in situ conformation sequencing technology, named vRIC-seq, for probing viral RNA genome structure unbiasedly. Using vRIC-seq data, we reconstruct the tertiary structure of the SARS-CoV-2 genome and reveal a surprisingly "unentangled globule" conformation. We uncover many long-range duplexes and higher-order junctions, both of which are under purifying selections and contribute to the sequential package of the SARS-CoV-2 genome. Unexpectedly, the D614G and the other two accompanying mutations may remodel duplexes into more stable forms. Lastly, the structure-guided design of potent small interfering RNAs can obliterate the SARS-CoV-2 in Vero cells. Overall, our work provides a framework for studying the genome structure, function, and dynamics of emerging deadly RNA viruses.


Subject(s)
COVID-19/pathology , RNA, Viral/chemistry , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Virion/genetics , Animals , COVID-19/genetics , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Genome, Viral , Humans , Nucleic Acid Conformation , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Virion/chemistry , Virion/metabolism
9.
Lancet Infect Dis ; 21(2): 181-192, 2021 02.
Article in English | MEDLINE | ID: mdl-33217362

ABSTRACT

BACKGROUND: With the unprecedented morbidity and mortality associated with the COVID-19 pandemic, a vaccine against COVID-19 is urgently needed. We investigated CoronaVac (Sinovac Life Sciences, Beijing, China), an inactivated vaccine candidate against COVID-19, containing inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for its safety, tolerability and immunogenicity. METHODS: In this randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, healthy adults aged 18-59 years were recruited from the community in Suining County of Jiangsu province, China. Adults with SARS-CoV-2 exposure or infection history, with axillary temperature above 37·0°C, or an allergic reaction to any vaccine component were excluded. The experimental vaccine for the phase 1 trial was manufactured using a cell factory process (CellSTACK Cell Culture Chamber 10, Corning, Wujiang, China), whereas those for the phase 2 trial were produced through a bioreactor process (ReadyToProcess WAVE 25, GE, Umea, Sweden). The phase 1 trial was done in a dose-escalating manner. At screening, participants were initially separated (1:1), with no specific randomisation, into two vaccination schedule cohorts, the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and within each cohort the first 36 participants were assigned to block 1 (low dose CoronaVac [3 µg per 0·5 mL of aluminium hydroxide diluent per dose) then another 36 were assigned to block 2 (high-dose Coronavc [6 µg per 0·5 mL of aluminium hydroxide diluent per dse]). Within each block, participants were randomly assigned (2:1), using block randomisation with a block size of six, to either two doses of CoronaVac or two doses of placebo. In the phase 2 trial, at screening, participants were initially separated (1:1), with no specific randomisation, into the days 0 and 14 vaccination cohort and the days 0 and 28 vaccination cohort, and participants were randomly assigned (2:2:1), using block randomisation with a block size of five, to receive two doses of either low-dose CoronaVac, high-dose CoronaVac, or placebo. Participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was adverse reactions within 28 days after injection in all participants who were given at least one dose of study drug (safety population). The primary immunogenic outcome was seroconversion rates of neutralising antibodies to live SARS-CoV-2 at day 14 after the last dose in the days 0 and 14 cohort, and at day 28 after the last dose in the days 0 and 28 cohort in participants who completed their allocated two-dose vaccination schedule (per-protocol population). This trial is registered with ClinicalTrials.gov, NCT04352608, and is closed to accrual. FINDINGS: Between April 16 and April 25, 2020, 144 participants were enrolled in the phase 1 trial, and between May 3 and May 5, 2020, 600 participants were enrolled in the phase 2 trial. 743 participants received at least one dose of investigational product (n=143 for phase 1 and n=600 for phase 2; safety population). In the phase 1 trial, the incidence of adverse reactions for the days 0 and 14 cohort was seven (29%) of 24 participants in the 3 ug group, nine (38%) of 24 in the 6 µg group, and two (8%) of 24 in the placebo group, and for the days 0 and 28 cohort was three (13%) of 24 in the 3 µg group, four (17%) of 24 in the 6 µg group, and three (13%) of 23 in the placebo group. The seroconversion of neutralising antibodies on day 14 after the days 0 and 14 vaccination schedule was seen in 11 (46%) of 24 participants in the 3 µg group, 12 (50%) of 24 in the 6 µg group, and none (0%) of 24 in the placebo group; whereas at day 28 after the days 0 and 28 vaccination schedule, seroconversion was seen in 20 (83%) of 24 in the 3 µg group, 19 (79%) of 24 in the 6 µg group, and one (4%) of 24 in the placebo group. In the phase 2 trial, the incidence of adverse reactions for the days 0 and 14 cohort was 40 (33%) of 120 participants in the 3 µg group, 42 (35%) of 120 in the 6 µg group, and 13 (22%) of 60 in the placebo group, and for the days 0 and 28 cohort was 23 (19%) of 120 in the 3 µg group, 23 (19%) of 120 in the 6 µg group, and 11 (18%) of 60 for the placebo group. Seroconversion of neutralising antibodies was seen for 109 (92%) of 118 participants in the 3 µg group, 117 (98%) of 119 in the 6 µg group, and two (3%) of 60 in the placebo group at day 14 after the days 0 and 14 schedule; whereas at day 28 after the days 0 and 28 schedule, seroconversion was seen in 114 (97%) of 117 in the 3 µg group, 118 (100%) of 118 in the 6 µg group, and none (0%) of 59 in the placebo group. INTERPRETATION: Taking safety, immunogenicity, and production capacity into account, the 3 µg dose of CoronaVac is the suggested dose for efficacy assessment in future phase 3 trials. FUNDING: Chinese National Key Research and Development Program and Beijing Science and Technology Program.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , China/epidemiology , Female , Healthy Volunteers , Humans , Immunization Schedule , Immunoglobulin G , Immunoglobulin M , Male , Middle Aged , Seroconversion , Vaccination , Vaccines, Inactivated/administration & dosage , Young Adult
10.
Science ; 369(6499): 77-81, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32376603

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. Because of the novelty of the virus, there are currently no SARS-CoV-2-specific treatments or vaccines available. Therefore, rapid development of effective vaccines against SARS-CoV-2 are urgently needed. Here, we developed a pilot-scale production of PiCoVacc, a purified inactivated SARS-CoV-2 virus vaccine candidate, which induced SARS-CoV-2-specific neutralizing antibodies in mice, rats, and nonhuman primates. These antibodies neutralized 10 representative SARS-CoV-2 strains, suggesting a possible broader neutralizing ability against other strains. Three immunizations using two different doses, 3 or 6 micrograms per dose, provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without observable antibody-dependent enhancement of infection. These data support the clinical development and testing of PiCoVacc for use in humans.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Vaccines , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dose-Response Relationship, Immunologic , Female , Immunogenicity, Vaccine , Immunoglobulin G/biosynthesis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Pilot Projects , Pneumonia, Viral/virology , Rats , Rats, Wistar , SARS-CoV-2 , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Vero Cells , Viral Load , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Viral Vaccines/immunology
11.
PLoS One ; 12(3): e0174140, 2017.
Article in English | MEDLINE | ID: mdl-28328959

ABSTRACT

Single nucleotide polymorphisms (SNPs) in tumor-related genes have been reported to play important roles in cancer development. Recent studies have shown that 3'-untranslated regions (UTR) polymorphisms are associated with the occurrence and prognosis of cancers. The aim of this study is to analyze the association between KRAS and VEGF gene 3'-UTR SNPs and genetic susceptibility to colorectal cancer (CRC). In this case-control study of 371 CRC cases and 246 healthy controls, we analyzed the association between one SNP (rs1137188G > A) in the KRAS gene and four SNPs (rs3025039C > T, rs3025040C > T, rs3025053G > A and rs10434A > G) in the VEGF gene and CRC susceptibility by the improved multiplex ligase detection reaction (iMLDR) method. We checked the selected SNPs' minor allele frequency and its distribution in the frequency of Chinese people by Hap-map database and Hardy-Weinberg equilibrium, and used multivariate logistic regression models to estimate adjusted odds ratios (AORs) and 95% confidence intervals (95% CIs). We found that the rs3025039C variant genotype in the VEGF gene was associated with a significant protection for CRC (AOR = 0.693, 95% CI = 0.485-0.989; P = 0.043 for CC and CT+TT). Nevertheless, the difference was no longer significant after Bonferroni correction (Bonferroni-adjusted P = 0.172). In genetic polymorphisms analysis, we found that the KRAS rs1137188 variant AA genotype had higher portion of tumor size (≥ 5 cm) (P = 0.01; Bonferroni-adjusted P = 0.04), which suggested that the rs1137188 variant AA genotype may significantly be associated with increased progression of CRC. In conclusion, our study suggested that these five SNPs in the KRAS gene and the VEGF gene were not associated with CRC susceptibility in Han Chinese in Sichuan province.


Subject(s)
3' Untranslated Regions/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Vascular Endothelial Growth Factor A/genetics , Adult , Aged , Aged, 80 and over , Asian People/genetics , Case-Control Studies , Female , Gene Frequency/genetics , Genotype , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Prognosis , Young Adult
12.
J Microbiol ; 52(4): 333-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24682995

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is an important disease, which leads to severe economic losses in swine-producing areas of the world. However, current antiviral strategies cannot provide highly effective protection. In this study, three theoretically effective interference target sites (71-91, 144-164, 218-238) targeting the nucleocapsid (N) gene of PRRSV were designed and selected, and then three siRNA-expressing plasmids were constructed, respectively named p2.1-N71, p2.1-N144, and p2.1-N218. The recombinant siRNA-expressing plasmids were transfected into Marc-145 cells; then the cells were infected with PRRSV (JL07SW strain); finally, after incubation for 48 h, the antiviral activity of those siRNA-expressing plasmids in Marc-145 cells was assessed by cytopathic effects, virus titers, indirect immunofluorescence, and quantitative real-time PCR. Experimental results demonstrated that these three siRNA-expressing plasmids could effectively and significantly inhibit the replication of PRRSV by 93.2%, 83.6%, and 89.2% in Marc-145 cells, respectively. Among these three siRNA-expressing plasmids, p2.1-N71 was found to be most effective, while p2.1-N144 and p2.1-N218 displayed relatively weak inhibition of virus replication. The results indicated that siRNA-expressing plasmids targeting the N gene of PRRSV could significantly inhibit PRRSV replication in Marc-145 cells. Based on our experimental results and previous reports, the 71-91, 179-197, and 234-252 sites of the N gene are good choices to effectively inhibit the replication of PRRSV, and this RNA interference technique can be a potential anti-PRRSV strategy.


Subject(s)
Nucleocapsid Proteins/antagonists & inhibitors , Porcine respiratory and reproductive syndrome virus/physiology , RNA Interference , Virus Replication , Animals , Antiviral Agents/metabolism , Cell Line , Nucleocapsid Proteins/genetics , Plasmids , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL