Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474660

ABSTRACT

In this study, novel amphiphilic polymer emulsifiers for avermectin (Avm) were synthesized facilely via the hydrolysis of ethylene-maleic anhydride copolymer (EMA) with different agents, and their structures were confirmed by various techniques. Then, water-based Avm-nanoemulsions were fabricated with the emulsifiers via phase inversion emulsification process, and superior emulsifier was selected via the emulsification effects. Using the superior emulsifier, an optimal Avm-nanoemulsion (defined as Avm@HEMA) with satisfying particle size of 156.8 ± 4.9 nm, encapsulation efficiency (EE) of 69.72 ± 4.01% and drug loading capacity (DLC) of 54.93 ± 1.12% was constructed based on response surface methodology (RSM). Owing to the emulsifier, the Avm@HEMA showed a series of advantages, including high stability, ultraviolet resistance, low surface tension, good spreading and high affinity to different leaves. Additionally, compared to pure Avm and Avm-emulsifiable concentrate (Avm-EC), Avm@HEMA displayed a controlled releasing feature. The encapsulated Avm was released quite slowly at normal conditions (pH 7.0, 25 °C or 15 °C) but could be released at an accelerated rate in weak acid (pH 5.5) or weak alkali (pH 8.5) media or at high temperature (40 °C). The drug releasing profiles of Avm@HEMA fit the Korsmeyer-Peppas model quite well at pH 7.0 and 25 °C (controlled by Fickian diffusion) and at pH 7.0 and 10 °C (controlled by non-Fickian diffusion), while it fits the logistic model under other conditions (pH 5.5 and 25 °C, pH 8.5 and 25 °C, pH 7.0 and 40 °C).

2.
Langmuir ; 39(27): 9418-9430, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37364378

ABSTRACT

In the present study, the copolymer of mixed olefins included in unetherified gasoline and maleic anhydride (PUGM) was prepared by self-stabilized precipitation polymerization (2SP) and employed for the synthesis of a new family of stable polyelectrolyte complexes (PECs). Polyanionic saponified PUGM partially grafted with methoxy poly(ethylene glycol) (PUGMS-g-mPEG) and polycationic quaternized PUGM (PUGMQ) were both derived from PUGM via the facile modification of anhydride groups. The particle size, zeta potential, morphology, and stability of self-assembled PEC particles were investigated thoroughly. Strikingly, the introduction of long mPEG side chains (Mn = 4000) had a remarkable effect on the self-assembled particles, which displayed a constant particle size of ∼200 nm regardless of varying n+/n-. Moreover, it also enhanced the salt tolerance and long-term stability of PEC particles significantly. Our work not only provides an effective approach to PECs from petroleum resources with low cost but also deepens the understanding of the relationship between the chain structure of polyelectrolytes and the stability of PECs.

3.
Langmuir ; 39(39): 13908-13920, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37737879

ABSTRACT

This paper proposed a novel and versatile surface modification route by integrating UV light-mediated thiol-ene "click" surface grafting polymerization and postmodification via the reactions of the surface thiol groups. At first, poly(thiol ether) layers with tunable thiol group density, up to 8.2 × 102 ea/nm3 for cross-linked grafting layers, were grafted from biaxially oriented polypropylene (BOPP) film. Then, the surface -SH groups reacted with epoxy compounds to introduce quaternary ammonium salt. With the immobilized quaternary ammonium salt and coordinated Zn2+ ions, the modified film demonstrated 99.98% antibacterial rate against Staphylococcus aureusafter soaking in DI water for 21 days and in a highly alkaline environment (0.1 M NaOH aqueous solution) for 3 days, and the surface water contact angle decreased to 39°. At last, the polymethacrylate chains were also successfully grafted from the surface thiol groups of the cross-linked poly(thiol ether) under visible light irradiation. With 2-(dimethyldodecylammonium) ethyl methacrylate as the grafting monomer, the modified BOPP film had shown a 99.99% antibacterial rate against both Escherichia coliand S. aureus. Meanwhile, with 2-methacryloxyethyl phosphoryl choline as grafting monomer, the modified surface showed an excellent antibioadhesion of living S. aureus, and the surface water contact angle was as low as 48°.

4.
Biomacromolecules ; 24(12): 6032-6040, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37967289

ABSTRACT

The pursuit of low-cytotoxicity modification strategies represents a prominent avenue in cell coating research, holding immense significance for the advancement of practical living cell-related technologies. Here, we presented a novel method to fabricate encapsulated yeast cells with a yolk-shell structure by biomimetic mineralization and visible-light-induced surface graft polymerization. In this approach, an amorphous calcium carbonate (ACC) shell was first deposited on the surface of a yeast cell (cell@ACC) modified with 4 layers of self-assembled poly(diallyl dimethylammonium chloride) (PDADMAC)/poly(acrylic acid) (PAA) film using a biomimetic mineralization technique. Subsequently, polyethylenimine (PEI) was absorbed on the surface of cell@ACC by electrostatic interaction. Then, a cross-linked shell was introduced by surface-initiated graft polymerization of poly(ethylene glycol) diacrylate (PEGDA) on cell@ACC under irradiation of visible light using thioxanthone catechol-O,O'-diacetic acid as the photosensitizer. After the removal of the inner ACC shell, the yolk-shell-structured yeast cells (cell@PHS) were obtained. Due to the mild conditions of the strategy, the cell@PHS could retain 98.81% of its original viability. The introduction of the shell layer significantly prolonged the lag phase of yeast cells, which could be tuned between 5 and 25 h by regulating the thickness of the shell. Moreover, the cell@PHS showed improved resistance against lyticase due to the presence of a protective shell. After 30 days of storage, the viability of cell@PHS was 81.09%, which is significantly higher than the 19.89% viability of native yeast cells.


Subject(s)
Biomimetics , Calcification, Physiologic , Saccharomyces cerevisiae , Light , Polymerization
5.
Biomacromolecules ; 23(6): 2614-2623, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35603741

ABSTRACT

Compared to traditional two-dimensional (2D) biochips, three-dimensional (3D) biochips exhibit the advantages of higher probe density and detection sensitivity due to their designable surface microstructure as well as enlarged surface area. In the study, we proposed an approach to prepare a 3D protein chip by deposition of a monolayer of functionalized hollow silica nanoparticles (HSNs) on an activated cyclic olefin copolymer (COC) substrate. First, the COC substrate was chemically modified through the photografting technique to tether poly[3-(trimethoxysilyl) propyl methacrylate] (PTMSPMA) brushes on it. Then, a monolayer of HSNs was deposited on the modified COC and covalently attached via a condensation reaction between the hydrolyzed pendant siloxane groups of PTMSPMA and the Si-OH groups of HSNs. The roughness of the COC substrate significantly increased to 50.3 nm after depositing a monolayer of HSNs (ranging from 100 to 700 nm), while it only caused a negligible reduction in the light transmittance of COC. The HSN-modified COC was further functionalized with epoxide groups by a silane coupling agent for binding proteins. Immunoglobulin G could be effectively immobilized on this substrate with the highest immobilization efficiency of 75.2% and a maximum immobilization density of 1.236 µg/cm2, while the highest immobilization efficiency on a 2D epoxide group-modified glass slide was only 57.4%. Moreover, immunoassay results confirmed a competitive limit of detection (LOD) (1.06 ng/mL) and a linear detection range (1-100 ng/mL) of the 3D protein chip. This facile and effective approach for fabricating nanoparticle-based 3D protein microarrays has great potential in the field of biorelated detection.


Subject(s)
Nanoparticles , Protein Array Analysis , Epoxy Compounds , Polymers/chemistry , Silicon Dioxide
6.
Macromol Rapid Commun ; 43(21): e2200480, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35946394

ABSTRACT

Ionogels have attracted intensive attentions as promising flexible conductive materials. However, simultaneous integration of excellent mechanical properties, high conductivity, outstanding self-healing ability, and strong adhesiveness is still challenging. Here, an ingenious composition design is proposed to address this long-standing challenge of ionogels. High-performance PEI/PAA/CMC ionogels, consist of a loosely cross-linked poly(acrylic acid) (PAA) network, dynamically cross-linked network based on polycationic polyethyleneimine (PEI) and polyanionic PAA, and carboxymethyl cellulose (CMC) reinforcing filler, are formed in a deep eutectic solvent (DES) composed of choline chloride and urea. Benefiting from the loose PAA network and dynamic noncovalent interactions, ionogels with both highly enhanced mechanical robustness and excellent conductivity are obtained at high loading of DES, overcoming the strength-ductility/conductivity trade-off dilemma. By adjusting PEI/PAA mass ratio, the tensile strength and strain of PEI/PAA/CMC ionogels are effectively controlled in a wide range of 0.15-7.9 MPa and 232-1161%, respectively, while maintaining the desirable conductivity of ≈10-4 S cm-1 . Besides, healed tensile strength over 2.1 MPa and adhesion strength up to 0.2 MPa are achieved for the PEI0.06 /PAA0.25 /CMC0.01 ionogel. The delicate design strategy provides a feasible approach to prepare ionogels with outstanding comprehensive performance, which have potential for applications in flexible electronics.

7.
Langmuir ; 37(14): 4102-4111, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33787279

ABSTRACT

A facile synthetic route was developed to prepare a surface-grafted brush layer of poly(vinyl ethers) (PVEs) directly by a radical mechanism, with the "naked" Li+ acting as a catalyst. Density functional theory calculations suggested that complexation of naked Li+ to VEs significantly reduced the highest unoccupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap from 5.08 to 0.68 eV, providing a better prospect for electron transfer. The structure, morphology, and surface properties of grafted polymer layers were characterized using attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and dynamic water contact angle (DCA). Moreover, ellipsometry data indicated that the thickness of the polymer brushes was in the range of 20-60 nm, which corresponds to the grafting densities of 0.65-1.15 chain/nm2, and DCA decreased from 84.4 to 45.3°. Most importantly, no hydrolysis was observed for the modified surface after 30 days of exposure to phosphate-buffered saline solution, 0.1 mol/L NaOH(eq) and 0.1 mol/L HCl(eq), demonstrating excellent hydrolysis resistance with long service life. In addition, as a proof of concept, the side hydroxyl groups of grafted PVEs provide active sites for efficient fixation of bioactive molecules, e.g., glycosaminoglycan and serum protein.

8.
Angew Chem Int Ed Engl ; 60(48): 25246-25251, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34558786

ABSTRACT

White-light emitting polymers (WLEPs) based on aggregation microenvironment-sensitive aggregation-induced emission (AIE) and Förster resonance energy transfer (FRET) have aroused great interest in lighting and optoelectronic devices. Herein, we developed a novel strategy to construct WLEP particles via a stepwise self-stabilized precipitation polymerization of two emission-complementary AIEgens under core-shell engineering, where the AIE characteristics and FRET process of core-shell fluorescent polymeric particles (CS-FPPs) could be modulated by altering aggregation microenvironment under swelling and shrinking of polymers, facilitating the tunable white light emission of CS-FPPs. Furthermore, such tuning could be fast realized in the solid state, thus demonstrating the potential in anti-counterfeiting. This work proved the significance of aggregation microenvironment on emission of luminogens, guiding the development of high-efficiency emission-tunable materials.

9.
Langmuir ; 36(47): 14417-14424, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33198464

ABSTRACT

Anomalously shaped microparticles have attractive advantages in applications. They are usually prepared by chain-growth polymerizations in heterogeneous systems. Recently, thiol-X step-growth polymerizations have been used to produce functional particles with a regular shape but rarely anomalous shapes. Herein, we report the preparation of anomalously shaped particles by thiol-isocyanate dispersion polymerization (Dis.P) in ethanol using polyvinylpyrrolidone (PVP) as a stabilizer and catalyst. Papillae-shaped, raspberry-like, and multibulged particles are prepared by tuning monomer combinations, contents, and feed ratios. Particle morphology evolutions during polymerization are observed by scanning electron microscopy (SEM). Distinct from previous works, particles with residual -SH groups are obtained even with equal moles of monomers added initially. The residue of -SH groups is revealed by Fourier transform infrared spectroscopy (FT-IR) analyses and confirmed by detection with a fluorescent probe containing disulfide linkage. Moreover, fluorescent particle probes are formed by the reaction of excess -NCO groups on particles with fluorescein isothiocyanate isomer I (FITC) and dithioacetal-functionalized perylenediimide (DTPDI). The probes are sensitive in detection of glutathione (GSH) and Hg2+ in water. Hg2+ as low as 1-0.1 ppb is detected using a raspberry-like particle probe with DTPDI.

10.
Angew Chem Int Ed Engl ; 59(25): 10122-10128, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31828915

ABSTRACT

Precipitation polymerization is becoming increasingly popular in energy, environment and biomedicine. However, its proficient utilization highly relies on the mechanistic understanding of polymerization process. Now, a fluorescence self-reporting method based on aggregation-induced emission (AIE) is used to shed light on the mechanism of precipitation polymerization. The nucleation and growth processes during the copolymerization of a vinyl-modified AIEgen, styrene, and maleic anhydride can be sensitively monitored in real time. The phase-separation and dynamic hardening processes can be clearly discerned by tracking fluorescence changes. Moreover, polymeric fluorescent particles (PFPs) with uniform and tunable sizes can be obtained in a self-stabilized manner. These PFPs exhibit biolabeling and photosensitizing abilities and are used as superior optical nanoagents for photo-controllable immunotherapy, indicative of their great potential in biomedical applications.

11.
Macromol Rapid Commun ; 39(20): e1800298, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30085365

ABSTRACT

A simple approach to synthesize extremely high glass transition temperature (Tg > 300 °C) hydrocarbon polymers that introduces bridged cyclic backbone and bulky pendant group simultaneously is reported. This method uses highly 3,4-regulated poly(phenyl-1,3-butadiene) as a prepolymer for cationic cyclization postmodification. The Tg of cyclized highly 3,4-regulated (94.0%) poly(1-phenyl-1,3-butadiene) (P(1-PB)) can reach 304 °C. To further restrict the movement of bridged cyclic backbone by changing the position of the pendant substituent group, highly 3,4-regulated (96.2%) poly(2-phenyl-1,3-butadiene) (P(2-PB)) is used as the prepolymer. The Tg of its cyclized product reaches 325 °C, and this value is the highest ever reported among all hydrocarbon polymers. The results indicate that the regularity of poly(phenyl-1,3-butadiene) and the pendant substituent group are crucial factors when synthesizing high-temperature hydrocarbon polymers through this approach.


Subject(s)
Butadienes/chemical synthesis , Hydrocarbons/chemical synthesis , Polymers/chemical synthesis , Butadienes/chemistry , Cations , Cyclization , Hydrocarbons/chemistry , Polymers/chemistry , Transition Temperature
12.
Macromol Rapid Commun ; 39(20): e1800212, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29947153

ABSTRACT

Entrapment of living cells into a polymer network has significant potential in various fields such as biomass conversion and tissue engineering. A crucial challenge for this strategy is to provide a mild enough condition to preserve cell viability. Here, a facile and cytocompatible method to entrap living yeast cells into a poly(ethylene glycol) (PEG) network grafting from polypropylene nonwoven fabrics via visible-light-induced surface living graft crosslinking polymerization is reported. Due to the mild reaction conditions and excellent biocompatibility of PEG, the immobilized yeast cells could maintain their viability and proliferate well. The obtained composite sheet has excellent long-term stability and shows no significant efficiency loss after 25 cycles of repeated batch bioethanol fermentation. The immobilized yeast cells exhibit 18.0% higher bioethanol fermentation efficiency than free cells. This strategy for immobilization of living cells with high viability has significant potential application.


Subject(s)
Cells, Immobilized/chemistry , Ethanol/chemical synthesis , Polymerization , Saccharomyces cerevisiae/chemistry , Cells, Immobilized/metabolism , Ethanol/chemistry , Ethanol/metabolism , Fermentation , Polyethylene Glycols/chemistry , Polypropylenes/chemistry , Surface Properties
13.
Langmuir ; 33(22): 5577-5584, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28514852

ABSTRACT

The use of the mixed catalytic system with several enzymes can provide multiple benefits in terms of the cost, simplification of a multistep reaction, and effectiveness of complex chemical reactions. Although study of different enzyme coimmobilization systems has attracted increasing attention in recent years, separately immobilizing enzymes which can not coexist on one support is still one of the great challenges. In this paper, a simple and effective strategy was introduced to separately encapsulate incompatible trypsin and transglutaminase (TGase) into different poly(ethylene glycol) (PEG) network layer grafted on low-density polyethylene (LDPE) film via visible light induced living photografting polymerization. As a proof of concept, this dual-enzyme separately loaded film was used to catalyze the synthesis of a new target antitumor drug LTV-azacytidine. The final results demonstrated that this strategy could maintain higher activities of both enzymes than the mixed coimmobilization method. And the mass spectra analysis results demonstrated that LTV-azacytidine was successfully synthesized. We believe that this facile and mild separately immobilizing incompatible enzyme strategy has great application potential in the field of biocatalysis.


Subject(s)
Polyethylene Glycols/chemistry , Enzymes, Immobilized , Light , Polymerization
14.
Des Monomers Polym ; 20(1): 66-73, 2017.
Article in English | MEDLINE | ID: mdl-29491780

ABSTRACT

Well-controlled anionic polymerization of an initiator-functionalized monomer, p-(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n-BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES-b-PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.

15.
Des Monomers Polym ; 20(1): 476-484, 2017.
Article in English | MEDLINE | ID: mdl-29491819

ABSTRACT

In this paper, we present a tandem anionic-radical approach for synthesizing hypergrafted polymers. We prepared 4-(N,N-diphenylamino)methylstyrene (DPAMS) as a new radical-based inimer. Linear PDPAMS was prepared through anionic polymerization. Hypergrafted PDPAMS was synthesized through the self-condensing vinyl polymerization of DPAMS with linear PDPAMS. The linear backbone of PDPAMS, which incorporated latent radical initiating sites, served as a 'hyperlinker' to link hyperbranched side chains. The molecular weights of hypergrafted polymers increased as the length of the linear backbone chain increased. The hypergrafted structure of the resulting polymer was confirmed using a conventional gel permeation chromatograph apparatus equipped with a multiangle light scattering detector, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. This strategy can be applied to synthesize other complex architectures based on hyperbranched polymers by changing the structure of a polymer backbone through anionic polymerization.

16.
Macromol Rapid Commun ; 37(19): 1611-1617, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27501990

ABSTRACT

The precise construction of a hierarchical complex pattern on substrates is required for numerous applications. Here, a strategy to fabricate well-defined hierarchical three dimensional (3D) patterns on polymer substrate is developed. This technique, which combines photolithography and visible light-induced surface initiated living graft crosslinking polymerization (VSLGCP), can effectively graft 3D patterns onto polymer substrate with high fidelity and controllable height. Owing to the living nature of VSLGCP, hierarchical 3D patterns can be prepared when a sequential living graft crosslinking process is performed on the first formed patterns. As a proof-of-concept, a reactive two layer 3D pattern with a morphology of lateral stripe on vertical stripe is prepared and employed to separately immobilize model biomolecules, e.g., biotin and IgG. This two component pattern can specifically interact with corresponding target proteins successfully, indicating that this strategy has potential applications in the fabrication of polymer-based multicomponent biomolecule microarrays.


Subject(s)
Light , Polymers/chemistry , Particle Size , Photochemical Processes , Polymers/chemical synthesis , Surface Properties
17.
Langmuir ; 31(3): 925-36, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25551684

ABSTRACT

Previously, synthesis of anisotropic particles by seeded polymerizations has involved multiple process steps. In conventional one-pot dispersion polymerization (Dis.P) with a cross-linker added, only spherical particles are produced due to rapid and high cross-linking. In this Article, a straightforward one-pot preparation of monodisperse anisotropic particles with tunable morphology, dimensions, surface roughness, and asymmetrically distributed functional groups is described. With a cross-linker of divinylbenzene (DVB, 8%), ethylene glycol dimethacrylate (EGDMA, 6%), or dimethacryloyloxybenzophenone (DMABP, 5%) added at 40 min, shortly after the end of nucleation stage in Dis.P of styrene (St) in methanol and water (6/4, vol), the swollen growing particles are inhomogeneously cross-linked at first. Then, at low gel contents of 59%, 49%, and 69%, corresponding to the cases using DVB, EGDMA, and DMABP, respectively, the growing particle phase separates and snowman- or dumbbell-like particles are generated. Thermodynamic and kinetic analyses reveal that moderate cross-linking and sufficient swelling of growing particles determine the formation and growth of anisotropic particles during polymerization. Morphology, surface roughness, sizes, and cross-linking degrees of each domain of final particles are tuned continuously by varying start addition time and contents of cross-linkers. The snowman-like particles fabricated with DVB have a gradient cross-linking and asymmetrical distribution of pendant vinyl groups from their body to head. The dumbbell-like particles prepared using DMABP have only one domain cross-linked; i.e., only one domain contains photosensitive benzophenone (BP) groups. With addition of glycidyl methacrylate (GMA) or propargyl methacrylate (PMA) together with DVB or EGDMA, epoxy or alkynyl groups are asymmetrically incorporated. With the aid of these functional groups, carboxyl, amino, or thiol groups and PEG (200) are attached by thiol-ene (yne) click and photocoupling reactions.

18.
Macromol Rapid Commun ; 36(3): 319-26, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25490977

ABSTRACT

Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO.


Subject(s)
Graphite/chemistry , Polyynes/chemistry , Polymerization , Stereoisomerism
19.
Small ; 10(7): 1351-60, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24130101

ABSTRACT

Functionalized fluorescent dyes have attracted great interest for the specific staining of subcellular organelles in multicellular organisms. A novel nanometer-sized water-soluble multi-functional squarylium indocyanine dye (D1) that contains four primary amines is synthesized. The dye exhibits good photostability, non-toxicity and biocompatibility. Isothermal titration calorimetry demonstrates that an affinity between D1 and DNA is higher than that between D1 and analogue of phospholipids. Analysis of circular dichroism spectra indicates that D1 targets to the DNA minor groove and aggregates to a helix. Because of the distinct affinity between the dye and subcellular organelles, the dye exhibits difunctional abilities to label the cell nuclei in fixed cells/tissue and the cell membranes in live cells/tissue. By combination of the two staining capabilities, the dye is further explored as a specific marker to distinguish apoptotic cells in live cells/tissue. The research opens a new way to design novel multifunctional dyes for life science applications.


Subject(s)
Cell Membrane/metabolism , Cell Nucleus/metabolism , Coloring Agents/metabolism , Indoles/metabolism , Animals , Calorimetry , Cell Survival , Circular Dichroism , Coloring Agents/chemical synthesis , Coloring Agents/chemistry , DNA/metabolism , Drosophila melanogaster/metabolism , Indoles/chemical synthesis , Indoles/chemistry , Microscopy, Confocal , Models, Molecular , Solubility , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Staining and Labeling , Water/chemistry
20.
Small ; 10(20): 4087-92, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-24976526

ABSTRACT

To date, perylene derivatives have not been explored as DNA intercalator to inhibit cancer cells by intercalating into the base pairs of DNA. Herein, a water-soluble perylene bisimide (PBDI) that efficiently intercalates into the base pairs of DNA is synthesized. Excitingly, PBDI is superior to the commercial DNA intercalator, amonafide, for specific nuclear accumulation and effective suppression of cancer cells and tumors.


Subject(s)
Cell Nucleus/metabolism , DNA/metabolism , Intercalating Agents/metabolism , Perylene/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Circular Dichroism , Humans , Molecular Structure , Perylene/chemistry , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL