Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
FASEB J ; 38(12): e23723, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38865198

ABSTRACT

Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.


Subject(s)
Acute Kidney Injury , Heat Stroke , Membrane Proteins , Mitophagy , Prolyl-Hydroxylase Inhibitors , Animals , Male , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Apoptosis/drug effects , Heat Stroke/complications , Heat Stroke/drug therapy , Heat Stroke/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitophagy/drug effects , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use
2.
Ecotoxicol Environ Saf ; 242: 113878, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35849902

ABSTRACT

Nickel-induced allergic contact dermatitis (ACD) is a common skin disease. The mechanism by which nickel causes ACD is not clear. There is no treatment for it, only symptomatic therapy. However, due to the lifetime sensitization characteristics, the recurrence rate in patients is high. T lymphocytes play a key role in nickel-induced ACD. Elucidating the potential mechanism underlying nickel-induced T lymphocyte signalling might make it possible to achieve targeted treatment of nickel-induced ACD. In our study, a phosphoproteomic approach based on tandem mass tag (TMT) labelling and LCMS/MS analyses was employed. An animal model of nickel allergy was established. Splenic T lymphocytes were purified for quantitative phosphoproteomic analysis. The numbers of phosphoproteins, phosphopeptides and phosphosites identified in this study were 3072, 7977 and 10,200, respectively. Comprehensive gene ontology (GO) analysis combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that nickel can significantly affect the phosphorylation of the mTOR signalling pathway in T lymphocytes. Western blotting analysis was used to detect changes in the expression of autophagy-related proteins (Beclin 1, LC3II, and p62). Nickel allergy changed autophagy-related protein expression (p < 0.05). It has been demonstrated that nickel causes autophagy of T lymphocytes in the spleen. Using autophagy inhibitors to intervene, it was found that Th1 differentiation was inhibited, and the expression of Th1-related inflammatory factors was downregulated. Overall, the identification of relevant signalling pathways yielded new insights into the molecular mechanisms underlying nickel allergy and might help in the discovery and development of mechanism-based drugs.


Subject(s)
Dermatitis, Allergic Contact , Nickel , Animals , Autophagy , Nickel/toxicity , Signal Transduction , T-Lymphocytes
3.
Ecotoxicol Environ Saf ; 228: 112980, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34794024

ABSTRACT

BACKGROUND: Electromagnetic pollution cannot be ignored. Long-term low-dose electromagnetic field (EMF) exposure can cause central nervous system dysfunction without effective prevention. MATERIALS/METHODS: Male C57BL/6J mice (6-8 weeks, 17-20 g) were used in this study. Depression-like and anxiety-like behaviors detected by behavioral experiments were compared among different treatments. 16S rRNA gene sequencing and non-targeted liquid chromatography-mass spectrometry (LC-MS) metabolomics were used to explore the relationship between EMF exposure and heat acclimation (HA) effects on gut microbes and serum metabolites. RESULTS: Both EMF and HA regulated the proportions of p_Firmicutes and p_Bacteroidota. EMF exposure caused the proportions of 6 kinds of bacteria, such as g_Butyricicoccus and g_Anaerotruncus, to change significantly (p < 0.05). HA restored the balance of gut microbes that was affected by EMF exposure and the proportion of probiotics (g_Lactobacillus) increased significantly (p < 0.01). Serum metabolite analysis suggested that HA alleviated the disturbance of serum metabolites (such as cholesterol and D-mannose) induced by EMF exposure. Both the metabolic KEGG pathways and PICRUSt functional analysis demonstrated that tryptophan metabolism, pyrimidine metabolism and amino acid biosynthesis were involved. CONCLUSIONS: EMF exposure not only led to depression-like neurobehavioral disorders, but also to gut microbiota imbalance. HA alleviated the depression features caused by EMF exposure. Based on the analysis of gut microbiota associated with serum metabolites, we speculated that gut microbiota might play a vital role in the cross-tolerance provided by HA.

6.
Cell Physiol Biochem ; 41(1): 101-114, 2017.
Article in English | MEDLINE | ID: mdl-28214874

ABSTRACT

BACKGROUND/AIMS: The mechanisms underlying the protective role of heat acclimation (HA) in heat stroke (HS)-induced brain injury are still unclear. The autophagy-lysosome pathway is known to pay an important role in protecting stressed or diseased cells from death. Nevertheless, whether autophagy and lysosomes are involved in HA-mediated neuroprotection following HS exposure remains unclear. METHODS: The protective effects of HA were assessed by rectal temperature, hematoxylin-eosin staining, transmission electron microscopic analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Fluoro Jade B staining, after mice were subjected to HS. The effects of HA on autophagy and lysosomes were assessed in the presence of the autophagy inhibitor 3-methyladenine (3MA). Autophagy and lysosome-associated proteins were analysed by Western blotting. RESULTS: We found that HA protected against HS-induced death and brain injury. HS can robustly induce autophagy and impair lysosome function. HA pre-conditioning significantly modulated the autophagy level, and improved lysosome function in HS mice. Furthermore, 3MA completely abolished the neuroprotective effect of HA on HS. CONCLUSION: HS may induce brain injury through lysosomal dysfunction and impaired autophagic flux. HA protected against HS-induced brain injury via a mechanism involving the autophagy-lysosome pathway.


Subject(s)
Autophagy , Brain Injuries/pathology , Lysosomes/metabolism , Adenine/analogs & derivatives , Adenine/toxicity , Animals , Apoptosis , Autophagy/drug effects , Beclin-1/metabolism , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/mortality , Cathepsin B/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebral Cortex/ultrastructure , Heat Stroke/complications , Hot Temperature , Lysosomal Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Microtubule-Associated Proteins/metabolism , Survival Rate
8.
J Neuroinflammation ; 13(1): 296, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27871289

ABSTRACT

BACKGROUND: Prostaglandin E2 (PGE2)-involved neuroinflammatory processes are prevalent in several neurological conditions and diseases. Amyloid burden is correlated with the activation of E-prostanoid (EP) 2 receptors by PGE2 in Alzheimer's disease. We previously demonstrated that electromagnetic field (EMF) exposure can induce pro-inflammatory responses and the depression of phagocytosis in microglial cells, but the signaling pathways involved in phagocytosis of fibrillar ß-amyloid (fAß) in microglial cells exposed to EMF are poorly understood. Given the important role of PGE2 in neural physiopathological processes, we investigated the PGE2-related signaling mechanism in the immunomodulatory phagocytosis of EMF-stimulated N9 microglial cells (N9 cells). METHODS: N9 cells were exposed to EMF with or without pretreatment with the selective inhibitors of cyclooxygenase-2 (COX-2), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinases (MAPKs) and antagonists of PG receptors EP1-4. The production of endogenous PGE2 was quantified by enzyme immunoassays. The phagocytic ability of N9 cells was evaluated based on the fluorescence intensity of the engulfed fluorescent-labeled fibrillar ß-amyloid peptide (1-42) (fAß42) measured using a flow cytometer and a fluorescence microscope. The effects of pharmacological agents on EMF-activated microglia were investigated based on the expressions of JAK2, STAT3, p38/ERK/JNK MAPKs, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1), and EP2 using real-time PCR and/or western blotting. RESULTS: EMF exposure significantly increased the production of PGE2 and decreased the phagocytosis of fluorescent-labeled fAß42 by N9 cells. The selective inhibitors of COX-2, JAK2, STAT3, and MAPKs clearly depressed PGE2 release and ameliorated microglial phagocytosis after EMF exposure. Pharmacological agents suppressed the phosphorylation of JAK2-STAT3 and MAPKs, leading to the amelioration of the phagocytic ability of EMF-stimulated N9 cells. Antagonist studies of EP1-4 receptors showed that EMF depressed the phagocytosis of fAß42 through the PGE2 system, which is linked to EP2 receptors. CONCLUSIONS: This study indicates that EMF exposure could induce phagocytic depression via JAK2-STAT3- and MAPK-dependent PGE2-EP2 receptor signaling pathways in microglia. Therefore, pharmacological inhibition of PGE2 synthesis and EP2 receptors may be a potential therapeutic strategy to combat the neurobiological deterioration that follows EMF exposure.


Subject(s)
Amyloid beta-Peptides/pharmacology , Dinoprostone/metabolism , Microglia/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Peptide Fragments/pharmacology , Phagocytosis/drug effects , STAT3 Transcription Factor/metabolism , Animals , Cell Line, Transformed , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Electromagnetic Fields , Enzyme Inhibitors/pharmacology , Flow Cytometry , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Mice , Microglia/radiation effects , Mitogen-Activated Protein Kinase Kinases/genetics , Nitric Oxide/metabolism , Phagocytosis/radiation effects , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Signal Transduction/radiation effects , Time Factors
9.
J Neuroinflammation ; 11: 49, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24645646

ABSTRACT

BACKGROUND: Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed microglial cells (N9 cells) and documented relative pathways. METHODS: N9 cells were pretreated with or without recombinant murine MFG-E8 (rmMFG-E8), curcumin and an antibody of toll-like receptor 4 (anti-TLR4), and subsequently treated with EMF or a sham exposure. Their phagocytic ability was evaluated using phosphatidylserine-containing fluorescent bioparticles. The pro-inflammatory activation of microglia was assessed via CD11b immunoreactivity and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and nitric oxide (NO) via the enzyme-linked immunosorbent assay or the Griess test. We evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed N9 cells, including checking the expression of MFG-E8, αvß3 integrin, TLR4, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) using Western blotting. RESULTS: EMF exposure dramatically enhanced the expression of CD11b and depressed the phagocytic ability of N9 cells. rmMFG-E8 could clearly ameliorate the phagocytic ability of N9 cells after EMF exposure. We also found that EMF exposure significantly increased the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) and the production of NO; however, these increases were efficiently chilled by the addition of curcumin to the culture medium. This reduction led to the amelioration of the phagocytic ability of EMF-exposed N9 cells. Western blot analysis revealed that curcumin and naloxone restored the expression of MFG-E8 but had no effect on TLR4 and cytosolic STAT3. Moreover, curcumin significantly reduced the expression of NF-κB p65 in nuclei and phospho-STAT3 (p-STAT3) in cytosols and nuclei. CONCLUSIONS: This study indicates that curcumin ameliorates the depressed MFG-E8 expression and the attenuated phagocytic ability of EMF-exposed N9 cells, which is attributable to the inhibition of the pro-inflammatory response through the NF-κB and STAT3 pathways.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Curcumin/pharmacology , Electromagnetic Fields/adverse effects , Inflammation/etiology , Microglia , Phagocytes/physiology , Animals , CD11b Antigen/metabolism , Cell Line, Transformed , Cytokines/metabolism , Dose-Response Relationship, Radiation , Down-Regulation/drug effects , Flow Cytometry , Mice , Microglia/drug effects , Microglia/pathology , Microglia/radiation effects , NF-kappa B/metabolism , Nitric Oxide/metabolism , Phagocytes/drug effects , Phagocytosis , STAT3 Transcription Factor/metabolism , Time Factors
10.
Mol Vis ; 19: 1901-12, 2013.
Article in English | MEDLINE | ID: mdl-24049436

ABSTRACT

PURPOSE: Hypoxia-induced retinal ganglion cell (RGC) apoptosis has been implicated in many optic neuropathies. Insulin-like growth factor-1 (IGF-1) is important in maintaining neuronal survival, proliferation, and differentiation. The purpose of this study is to explore whether IGF-1 can protect RGCs from hypoxia-induced apoptosis and to determine the precise mechanisms that regulate this process. METHODS: Purified RGC cultures were obtained from the retinas of neonatal Sprague Dawley (SD) rats using a two-step panning method. Primary cultured RGCs were cultured in a closed hypoxic chamber (5% O2, 5% CO2, and 90% N2) for 12 h with or without IGF-1. The degree of apoptosis in the RGCs was detected by caspase-3 expression and TUNEL and JC-1 staining assays. The expression and phosphorylation of protein kinase B (Akt), p44/42 mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase-1/2 [Erk-1/2]), Bad, and caspase-3 was investigated with immunoblot analysis. RESULTS: Hypoxia induces apoptosis in primary Sprague Dawley rat RGCs, as detected by caspase-3 expression and TUNEL and JC-1 staining assays, and that IGF-1 treatment could significantly reduce this effect in RGCs. Interestingly, pretreatment of RGCs with AG1024 (an IGF-1 inhibitor), U0126 (an Erk-1/2 inhibitor), and LY294002 (an Akt inhibitor) markedly attenuated the effects of IGF-1 treatment. Furthermore, western blot analysis suggested that the Erk-1/2 and Akt signaling pathways play a role in the protective effects of IGF-1 on RGCs exposed to hypoxia. CONCLUSIONS: These data indicate that IGF-1 can protect primary cultured RGCs against hypoxia-induced apoptosis via the Erk-1/2 and Akt signaling pathways, suggesting that IGF-1 treatment is a potential therapeutic approach for treating hypoxia-induced neurodegeneration in the retina.


Subject(s)
Apoptosis/drug effects , Cytoprotection/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Insulin-Like Growth Factor I/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/enzymology , Animals , Caspase 3/metabolism , Cell Hypoxia/drug effects , Cells, Cultured , Enzyme Activation/drug effects , Immunohistochemistry , Membrane Potential, Mitochondrial/drug effects , Neuroprotective Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Retinal Ganglion Cells/drug effects , Signal Transduction/drug effects
11.
Biomimetics (Basel) ; 8(4)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37622953

ABSTRACT

The Arithmetic Optimization Algorithm (AOA) is a meta-heuristic algorithm inspired by mathematical operators, which may stagnate in the face of complex optimization issues. Therefore, the convergence and accuracy are reduced. In this paper, an AOA variant called ASFAOA is proposed by integrating a double-opposite learning mechanism, an adaptive spiral search strategy, an offset distribution estimation strategy, and a modified cosine acceleration function formula into the original AOA, aiming to improve the local exploitation and global exploration capability of the original AOA. In the proposed ASFAOA, a dual-opposite learning strategy is utilized to enhance population diversity by searching the problem space a lot better. The spiral search strategy of the tuna swarm optimization is introduced into the addition and subtraction strategy of AOA to enhance the AOA's ability to jump out of the local optimum. An offset distribution estimation strategy is employed to effectively utilize the dominant population information for guiding the correct individual evolution. In addition, an adaptive cosine acceleration function is proposed to perform a better balance between the exploitation and exploration capabilities of the AOA. To demonstrate the superiority of the proposed ASFAOA, two experiments are conducted using existing state-of-the-art algorithms. First, The CEC 2017 benchmark function was applied with the aim of evaluating the performance of ASFAOA on the test function through mean analysis, convergence analysis, stability analysis, Wilcoxon signed rank test, and Friedman's test. The proposed ASFAOA is then utilized to solve the wireless sensor coverage problem and its performance is illustrated by two sets of coverage problems with different dimensions. The results and discussion show that ASFAOA outperforms the original AOA and other comparison algorithms. Therefore, ASFAOA is considered as a useful technique for practical optimization problems.

12.
Toxicol In Vitro ; 86: 105486, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36272530

ABSTRACT

Neural tube malformation is a common kind of human birth defect. High temperature is one of the most common physical teratogenic factors. Several studies have suggested that heat stress may cause neurotoxicity during brain development, but more studies are warranted to reveal the mechanism and draw consistent conclusions. The current study used a cell model of primary mouse embryonic neural stem/progenitor cells (NSPCs) subjected to heat stress of 43 °C for 20 min. Our study investigated the changes in the NSPCs transcriptome under heat stress using high-throughput mRNA-seq. The NSPCs showed remarkably altered genes associated with cell growth, proliferation, cell cycle, and survival when exposed to heat stress. Heat stress reduced cell viability, proliferation, and neurosphere formation and caused cell cycle arrest and apoptosis in cultured NSPCs. PCR arrays confirmed that the TNF receptor family plays an important role in the apoptosis of NSPCs during heat stress. The results of real-time PCR confirmed that heat stress affects the expression of critical genes. We provide transcriptomic insight into heat stress-induced developmental neurotoxic effects and the underlying mechanisms.


Subject(s)
Neural Stem Cells , Neurotoxicity Syndromes , Animals , Mice , Humans , Transcriptome , Cells, Cultured , Embryonic Stem Cells , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Cell Proliferation , Heat-Shock Response
13.
Heliyon ; 9(11): e21838, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38028005

ABSTRACT

Objective: Heatstroke (HS) is a severe acute disease related to gastrointestinal barrier dysfunction, systemic inflammation and multiple organ injury. Many of the functions of Intestinal alkaline phosphatase (IAP) have been linked to gut homeostasis, gut barrier function and inflammation. However, the protective effect of IAP on heatstroke is not fully elucidated. This study aims to explore the protective effect of IAP on heatstroke by maintaining intestinal barrier and improving permeability. Methods: Male C57BL/6 mice were placed in a controlled climate chamber (ambient temperature: 40.0 ± 0.5 °C; humidity: 60 ± 5 %) until the maximum core temperature (Tc, max) reached 42.7 °C (the received criterion of HS). Then heat exposed mice (n = 195) were divided into three groups: 0.2 mL of 0.9 % physiological saline (HS) or vehicle (HS + Vehicle) or 300 IU IAP (HS + IAP) by gavage at 0, 24, and 48 h after onset. Control group mice (Con) (n = 65) were not exposed to heat and were gavaged with 0.9 % physiological saline of the same volume at the same time. Results: IAP treatment significantly reduced the levels of endotoxin, FD4, and D-lactate in the blood of heatstroke mice, reduced intestinal permeability and maintained the integrity of the intestinal barrier by increasing the expression of tight junction proteins. Meanwhile, IAP treatment alleviated liver and kidney damage caused by heatstroke, reduced serum levels of inflammatory cytokines, and thus improved survival rate of mice after heatstroke. Conclusion: This study indicates that IAP can improve the intestinal barrier function and intestinal permeability by increasing intestinal tight junctions, reduce systemic inflammation and multiple organ injury and improving the survival rate of heatstroke. Therefore, we consider IAP may be added to enteral nutrition formulas as a potential means for diseases characterized by intestinal permeability disorders, including heatstroke.

14.
Microb Biotechnol ; 16(11): 2114-2130, 2023 11.
Article in English | MEDLINE | ID: mdl-37792264

ABSTRACT

The severity of heat stroke (HS) is associated with intestinal injury, which is generally considered an essential issue for HS. Heat acclimation (HA) is considered the best strategy to protect against HS. In addition, HA has a protective effect on intestinal injuries caused by HS. Considering the essential role of gut microbes in intestinal structure and function, we decided to investigate the potential protective mechanism of HA in reducing intestinal injury caused by HS. HA model was established by male C57BL/6J mice (5-6 weeks old, 17-19 g) were exposed at (34 ± 0.7)°C for 4 weeks to establish an animal HA model. The protective effect of HA on intestinal barrier injury in HS was investigated by 16S rRNA gene sequencing and nontargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. According to the experimental results, HA can change the composition of the gut microbiota, which increases the proportion of lactobacilli, faecal bacteria, and urinobacteria but decreases the proportion of deoxycholic acid. Moreover, HA can reduce liver and kidney injury and systemic inflammation caused by HS and reduce intestinal injury by enhancing the integrity of the intestinal barrier. In addition, HA regulates inflammation by inhibiting NF-κB signalling and increasing tight junction protein expression in HS mice. HA induces changes in the gut microbiota, which may enhance tight junction protein expression, thereby reducing intestinal inflammation, promoting bile acid metabolism, and ultimately maintaining the integrity of the intestinal barrier. In conclusion, HA induced changes in the gut microbiota. Among the gut microbiota, lactobacilli may play a key role in the potential protective mechanism of HA.


Subject(s)
Gastrointestinal Microbiome , Heat Stroke , Mice , Male , Animals , RNA, Ribosomal, 16S/genetics , Hot Temperature , Mice, Inbred C57BL , Inflammation , Tight Junction Proteins , Acclimatization
15.
Article in Zh | MEDLINE | ID: mdl-22804882

ABSTRACT

OBJECTIVE: To investigate the injury effects of microwave on the visual performance and the apoptosis of retinal ganglion cells (RGCs) in rats and the relationship between the impaired visual performance and RGCs apoptosis induced by microwave. METHODS: The visual performance of rats was observed by Electroretinogram (ERG) and Flash visual evoked potentials (F-VEP). The apoptosis of RGCs in vivo and in vitro was detected by TUNEL assay and Hoechst staining. RESULTS: Microwave exposure had no influence on ERG-a wave. The amplitude of ERG-b wave decreased significantly on the 3rd day and 7th day after microwave exposure (P < 0.01).The latency of ERG-b wave shortened significantly only at 3rd day after microwave exposure (P < 0.01). The latency of F-VEP extended markedly on the 3rd day after exposure (P < 0.05) and recovered on the 7th day after microwave exposure. The amplitude of F-VEP decreased significantly in exposure group, as compared with sham-exposure group, on the 3rd day and 7th day after microwave exposure (P < 0.05). After microwave exposure for 12 h, the apoptotic rate of RGCs in rat increased from 2.85% to 6.73%, and on the 7th day after exposure, the apoptotic rate of RGCs remained 8.93% (P < 0.05). The apoptotic rate of cultured RGCs increased from 8.42% to 13.91% at 6 hour (P < 0.05) and to 24.14% at 24 hour (P < 0.01) after microwave exposure (P < 0.05 or P < 0.01). CONCLUSION: Microwave exposure can injure the visual performance of rats, and the apoptosis of RGCs induced microwave may be one of the main pathological mechanisms.


Subject(s)
Microwaves/adverse effects , Retina/radiation effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/radiation effects , Animals , Apoptosis/radiation effects , Cells, Cultured , Male , Rats , Rats, Sprague-Dawley
16.
Parasit Vectors ; 15(1): 458, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510333

ABSTRACT

BACKGROUND: Mosquito-borne diseases threaten human health, but mosquito control faces various challenges, such as resistance to chemical insecticides. Thus, there is an urgent need for more effective and environment-friendly control agents. Capsaicin can downregulate the mTOR signaling pathway of tumor cells. The TOR signaling pathway can mediate the expression of vitellogenin (Vg) to regulate the fecundity of insects. Whether capsaicin has the potential to inhibit fecundity of mosquitoes by regulating TOR pathway and Vg expression is currently unclear. METHODS: Anopheles stephensi were fed with blood of mice administered capsaicin by gavage or sugar containing capsaicin followed by a blood feeding with normal mice. Then, the engorged female mosquitoes were tubed individually and underwent oviposition. The eggs and individuals in the subsequent development stages, including larvae, pupae, and emerging adults, were counted and compared between the capsaicin treatment and control groups. Additionally, total RNA and protein were extracted from the engorged mosquitoes at 24 h post blood feeding. Real-time PCR and western blot were performed to detect the transcriptional level and protein expression of the key fecundity-related molecules of mosquitoes. Finally, TOR signaling pathway was inhibited via rapamycin treatment, and changes in fecundity and the key molecule transcription and protein expression levels were examined to verify the role of TOR signaling pathway in the effect of capsaicin on mosquito fecundity. RESULTS: The laid and total eggs (laid eggs plus retained eggs) of An. stephensi were significantly reduced by feeding on the blood of capsaicin-treated mice (P < 0.01) or capsaicin-containing sugar (P < 0.01) compared with those in the control group. Moreover, the transcription and protein expression or phosphorylation levels of fecundity-related molecules, such as Akt, TOR, S6K, and Vg, were significantly decreased by capsaicin treatment. However, the effects disappeared between control group and CAP group after the TOR signaling pathway was inhibited by rapamycin. CONCLUSIONS: Capsaicin can decrease the fecundity of An. stephensi by inhibiting the TOR signaling pathway. These data can help us to not only understand the effect of capsaicin on the reproductive ability of An. stephensi and its underlying mechanism, but also develop new efficient, safe, and pollution-free mosquito vector control agents.


Subject(s)
Anopheles , Malaria , Female , Humans , Mice , Animals , Anopheles/physiology , Mosquito Vectors , Sirolimus , Capsaicin/metabolism , Signal Transduction , Vitellogenins/metabolism , Sugars
17.
Front Cell Infect Microbiol ; 12: 820650, 2022.
Article in English | MEDLINE | ID: mdl-35252033

ABSTRACT

Malaria is still the most widespread parasitic disease and causes the most infections globally. Owing to improvements in sanitary conditions and various intervention measures, including the use of antimalarial drugs, the malaria epidemic in many regions of the world has improved significantly in the past 10 years. However, people living in certain underdeveloped areas are still under threat. Even in some well-controlled areas, the decline in malaria infection rates has stagnated or the rates have rebounded because of the emergence and spread of drug-resistant malaria parasites. Thus, new malaria control methods must be developed. As the spread of the Plasmodium parasite is dependent on the part of its life cycle that occurs in mosquitoes, to eliminate the possibility of malaria infections, transmission-blocking strategies against the mosquito stage should be the first choice. In fact, after the gametocyte enters the mosquito body, it undergoes a series of transformation processes over a short period, thus providing numerous potential blocking targets. Many research groups have carried out studies based on targeting the blocking of transmission during the mosquito phase and have achieved excellent results. Meanwhile, the direct killing of mosquitoes could also significantly reduce the probability of malaria infections. Microorganisms that display complex interactions with Plasmodium, such as Wolbachia and gut flora, have shown observable transmission-blocking potential. These could be used as a biological control strategy and play an important part in blocking the transmission of malaria.


Subject(s)
Culicidae , Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Malaria/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum
18.
Article in English | MEDLINE | ID: mdl-35958934

ABSTRACT

Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis. Male rats in the control and HS groups were given normal saline, and those in the HZDP groups were given HZDP (0.23, 0.46, and 0.92 g/kg) before induction of HS. Serum contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intestinal fatty acid-binding protein (iFABP), and diamine oxidase (DAO) were determined using ELISA. Histopathology of intestinal injury was observed following H&E staining. The expression of claudin-3 was determined using western blot, immunohistochemistry, and immunofluorescence techniques. Moreover, network pharmacological tools were used to analyze the potential pharmacodynamic basis and the mechanism of HZDP. Treatment with HZDP significantly prolonged the time to reach Tc. Compared with the control group, the contents of TNF-α, IL-6, iFABP, and DAO in HS rats increased markedly. HZDP treatments reduced these levels significantly, and the effects in the middle dose group (0.46 g/kg) were most obvious. HZDP also attenuated intestinal injury and significantly reversed the decrease in claudin-3 expression. Bioinformatics analysis suggested that 35 active ingredients and 128 target genes of HZDP were screened from TCMSP and 93 target genes intersected with heatstroke target genes, which were considered potential therapeutic targets. TNF-α and IL-6 were the main inflammatory target genes of HZDP correlated with HS. These results indicated that HZDP effectively protected intestinal barrier function and prevented acute intestinal injury by increasing the expression of claudin-3 in rats, eventually improving heat resistance.

19.
Front Cell Neurosci ; 16: 865568, 2022.
Article in English | MEDLINE | ID: mdl-35634460

ABSTRACT

Background: Heat stroke is the outcome of excessive heat stress, which results in core temperatures exceeding 40°C accompanied by a series of complications. The brain is particularly vulnerable to damage from heat stress. In our previous studies, both activated microglia and increased neuronal autophagy were found in the cortices of mice with heat stroke. However, whether activated microglia can accelerate neuronal autophagy under heat stress conditions is still unknown. In this study, we aimed to investigate the underlying mechanism that caused neuronal autophagy upregulation in heat stroke from the perspective of exosome-mediated intercellular communication. Methods: In this study, BV2 and N2a cells were used instead of microglia and neurons, respectively. Exosomes were extracted from BV2 culture supernatants by ultracentrifugation and then characterized via transmission electron microscopy, nanoparticle tracking analysis and Western blotting. N2a cells pretreated with/without miR-155 inhibitor were cocultured with microglial exosomes that were treated with/without heat stress or miR-155 overexpression and subsequently subjected to heat stress treatment. Autophagy in N2a cells was assessed by detecting autophagosomes and autophagy-related proteins through transmission electron microscopy, immunofluorescence, and Western blotting. The expression of miR-155 in BV2 and BV2 exosomes and N2a cells was measured using real-time reverse transcription polymerase chain reaction. Target binding analysis was verified via a dual-luciferase reporter assay. Results: N2a autophagy moderately increased in response to heat stress and accelerated by BV2 cells through transferring exosomes to neurons. Furthermore, we found that neuronal autophagy was positively correlated with the content of miR-155 in microglial exosomes. Inhibition of miR-155 partly abolished autophagy in N2a cells, which was increased by coculture with miR-155-upregulated exosomes. Mechanistic analysis confirmed that Rheb is a functional target of miR-155 and that microglial exosomal miR-155 accelerated heat stress-induced neuronal autophagy mainly by regulating the Rheb-mTOR signaling pathway. Conclusion: Increased miR-155 in microglial exosomes after heat stroke can induce neuronal autophagy via their transfer into neurons. miR-155 exerted these effects by targeting Rheb, thus inhibiting the activity of mTOR signaling. Therefore, miR-155 could be a promising target for interventions of neuronal autophagy after heat stroke.

20.
Sci Rep ; 11(1): 13345, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172807

ABSTRACT

No FDA approved pharmacological therapy is available to reduce neuroinflammation following heatstroke. Previous studies have indicated that dexmedetomidine (DEX) could protect against inflammation and brain injury in various inflammation-associated diseases. However, no one has tested whether DEX has neuro-protective effects in heatstroke. In this study, we focused on microglial phenotypic modulation to investigate the mechanisms underlying the anti-inflammatory effects of DEX in vivo and in vitro. We found that DEX treatment reduced the expression of CD68, iNOS, TNF-α, and IL-1ß, and increased the expression of CD206, Arg1, IL-10 and TGF-ß in microglia, ameliorating heatstroke induced neuroinflammation and brain injury in mice. TREM2, whose neuro-protective function has been validated by genetic studies in Alzheimer's disease and Nasu-Hakola disease, was significantly promoted by DEX in the microglia. TREM2 esiRNA reversed the DEX-induced activation of PI3K/Akt signalling. Overall these findings indicated that DEX may serve, as a potential therapeutic approach to ameliorate heatstroke induced neuroinflammation and brain injury via TREM2 by activating PI3K/Akt signalling.


Subject(s)
Dexmedetomidine/pharmacology , Heat Stroke/drug therapy , Inflammation/drug therapy , Membrane Glycoproteins/metabolism , Microglia/drug effects , Microglia/metabolism , Receptors, Immunologic/metabolism , Animals , Heat Stroke/metabolism , Inflammation/metabolism , Male , Mice , Mice, Inbred ICR , Nitric Oxide Synthase Type II/metabolism , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL