Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Proc Natl Acad Sci U S A ; 121(13): e2313239121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38498710

ABSTRACT

High-entropy alloy nanoparticles (HEANs) possessing regulated defect structure and electron interaction exhibit a guideline for constructing multifunctional catalysts. However, the microstructure-activity relationship between active sites of HEANs for multifunctional electrocatalysts is rarely reported. In this work, HEANs distributed on multi-walled carbon nanotubes (HEAN/CNT) are prepared by Joule heating as an example to explain the mechanism of trifunctional electrocatalysis for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. HEAN/CNT excels with unmatched stability, maintaining a 0.8V voltage window for 220 h in zinc-air batteries. Even after 20 h of water electrolysis, its performance remains undiminished, highlighting exceptional endurance and reliability. Moreover, the intrinsic characteristics of the defect structure and electron interaction for HEAN/CNT are investigated in detail. The electrocatalytic mechanism of trifunctional electrocatalysis of HEAN/CNT under different conditions is identified by in situ monitoring and theoretical calculation. Meanwhile, the electron interaction and adaptive regulation of active sites in the trifunctional electrocatalysis of HEANs were further verified by density functional theory. These findings could provide unique ideas for designing inexpensive multifunctional high-entropy electrocatalysts.

2.
Cardiovasc Diabetol ; 23(1): 291, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113032

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is acknowledged as a disease continuum. Despite catheter ablation being recommended as a primary therapy for AF, the high recurrence rates have tempered the initial enthusiasm. Insulin resistance (IR) has been established as an independent predictor for the onset of AF. However, the correlation between non-insulin-based IR indices and late AF recurrence in patients undergoing radiofrequency catheter ablation remains unknown. METHODS: A retrospective cohort of 910 AF patients who underwent radiofrequency catheter ablation was included in the analysis. The primary endpoint was late AF recurrence during the follow-up period after a defined blank period. The relationship between non-insulin-based IR indices and the primary endpoint was assessed using multivariate Cox hazards regression models and restricted cubic splines (RCS). Additionally, the net reclassification improvement and integrated discrimination improvement index were calculated to further evaluate the additional predictive value of the four IR indices beyond established risk factors for the primary outcome. RESULTS: During a median follow-up period of 12.00 months, 189 patients (20.77%) experienced late AF recurrence, which was more prevalent among patients with higher levels of IR. The multivariate Cox hazards regression analysis revealed a significant association between these IR indices and late AF recurrence. Among the four indices, METS-IR provided the most significant incremental effect on the basic model for predicting late AF recurrence. Multivariable-adjusted RCS curves illustrated a nonlinear correlation between METS-IR and late AF recurrence. In subgroup analysis, METS-IR exhibited a significant correlation with late AF recurrence in patients with diabetes mellitus (HR: 1.697, 95% CI 1.397 - 2.063, P < 0.001). CONCLUSION: All the four non-insulin-based IR indices were significantly associated with late AF recurrence in patients undergoing radiofrequency catheter ablation. Addressing IR could potentially serve as a viable strategy for reducing the late AF recurrence rate.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Insulin Resistance , Recurrence , Humans , Atrial Fibrillation/surgery , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Male , Female , Catheter Ablation/adverse effects , Middle Aged , Retrospective Studies , Risk Factors , Aged , Time Factors , Risk Assessment , Treatment Outcome , Biomarkers/blood , Predictive Value of Tests , Blood Glucose/metabolism
3.
J Dairy Sci ; 107(8): 5449-5459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38490559

ABSTRACT

Milk and dairy products are excellent sources of mineral elements, including Ca, P, Mg, Na, K, and Zn. The purpose of this study was to determine the effect of nonthermal (homogenization) and thermal (heat treatment) treatments on the distribution of mineral elements in 4 milk fractions: fat, casein, whey protein, and aqueous phase. The study results revealed that the distribution of mineral elements (such as Mg and Fe) in fat fractions is extremely low, whereas significant mineral elements such as Ca, Zn, Fe, and Cu are mostly dispersed in casein fractions. For nontreated goat milk, Mo is the only element identified in the whey protein fraction, whereas K and Na are mostly found in the aqueous phase. Mineral element concentrations in fat (K, Zn, and so on) and casein fractions (Fe, Mo, and so on) increased dramatically after homogenization. Homogenization greatly decreased the concentration of mineral elements in the whey protein fraction (Ca, Na, and so on) and aqueous phase (Fe, Cu, and so on). After heat treatment, the element content in the fat fraction and casein fraction increased greatly when compared with raw milk, such as Cu and Mg in the fat fraction, Na and Cu in the whey protein fraction, the concentration of components such as Mg and Na in casein fraction increased considerably. In contrast, after homogenization, Zn in the aqueous phase decreased substantially, whereas Fe increased significantly. Therefore, both homogenization and heat treatment have an effect on the mineral element distribution in goat milk fractions.


Subject(s)
Goats , Milk , Minerals , Animals , Milk/chemistry , Minerals/analysis , Caseins/analysis , Whey Proteins/analysis
4.
Food Chem X ; 22: 101265, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38468636

ABSTRACT

Adulteration in dairy products presents food safety challenges, driven by economic factors. Processing may change specific biomarkers, thus affecting their effectiveness in detection. In this study, proteomics and metabolomics approaches were to investigate the detection of bovine milk (BM) constituents adulteration in pasteurized mare milk (PMM) and mare milk powder (MMP). Several bovine proteins and metabolites were identified, with their abundances in PMM and MMP increasing upon addition of BM. Proteins like osteopontin (OPN) and serotransferrin (TF) detected adulteration down to 1 % in PMM, whereas these proteins in MMP were utilized to identify 10 % adulteration. Biotin and N6-Me-adenosine were effective in detecting adulteration in PMM as low as 10 % and 1 % respectively, while in MMP, their detection limits extend down to 0.1 %. These findings offer insights for authenticating mare milk products and underscore the influence of processing methods on biomarker levels, stressing the need to consider these effects in milk product authentication.

5.
Sci Rep ; 14(1): 4402, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388665

ABSTRACT

The DNA repair gene PARP1 and NF-κB signalling pathway affect the metastasis of breast cancer by influencing the drug resistance of cancer cells. Therefore, this study focused on the value of the DNA repair gene PARP1 and NF-κB pathway proteins in predicting the postoperative metastasis of breast cancer. A nested case‒control study was performed. Immunohistochemical methods were used to detect the expression of these genes in patients. ROC curves were used to analyse the predictive effect of these factors on distant metastasis. The COX model was used to evaluate the effects of PARP1 and TNF-α on distant metastasis. The results showed that the expression levels of PARP1, IKKß, p50, p65 and TNF-α were significantly increased in the metastasis group (P < 0.001). PARP1 was correlated with IKKß, p50, p65 and TNF-α proteins (P < 0.001). There was a correlation between IKKß, p50, p65 and TNF-α proteins (P < 0.001). ROC curve analysis showed that immunohistochemical scores for PARP1 of > 6, IKKß of > 4, p65 of > 4, p50 of > 2, and TNF-α of > 4 had value in predicting distant metastasis (SePARP1 = 78.35%, SpPARP1 = 79.38%, AUCPARP1 = 0.843; Sep50 = 64.95%, Spp50 = 70.10%, AUCp50 = 0.709; SeTNF-α = 60.82%, SpTNF-α = 69.07%, AUCTNF-α = 0.6884). Cox regression analysis showed that high expression levels of PARP1 and TNF-α were a risk factor for distant metastasis after breast cancer surgery (RRPARP1 = 4.092, 95% CI 2.475-6.766, P < 0.001; RRTNF-α = 1.825, 95% CI 1.189-2.799, P = 0.006). Taken together, PARP1 > 6, p50 > 2, and TNF-α > 4 have a certain value in predicting breast cancer metastasis, and the predictive value is better when they are combined for diagnosis (Secombine = 97.94%, Spcombine = 71.13%).


Subject(s)
Breast Neoplasms , NF-kappa B , Humans , Female , NF-kappa B/genetics , NF-kappa B/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/surgery , I-kappa B Kinase/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Case-Control Studies , Transcription Factor RelA/metabolism , DNA Repair/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism
6.
Microbiol Res ; 285: 127730, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38805981

ABSTRACT

The tigecycline resistance gene tet(X4) has been widely reported in animals and animal products in some Asian countries including China in recent years but only sporadically detected in human. In this study, we investigated the prevalence and genetic features of tet(X4)-positive clinical E. coli strains. A total of 462 fecal samples were collected from patients in four hospitals located in four provinces in China in 2023. Nine tet(X4)-positive E. coli strains were isolated and subjected to characterization of their genetic and phenotypic features by performing antimicrobial susceptibility test, whole-genome sequencing, bioinformatic and phylogenetic analysis. The majority of the test strains were found to exhibit resistance to multiple antimicrobial agents including tigecycline but remained susceptible to colistin and meropenem. A total of seven different sequence types (STs) and an unknown ST type were identified among the nine tet(X4)-positive strains. Notably, the tet(X4) gene in six out of these nine tet(X4)-positive E. coli strains was located in a IncFIA-HI1A-HI1B hybrid plasmid, which was an tet(X4)-bearing epidemic plasmid responsible for dissemination of the tet(X4) gene in China. Furthermore, the tet(X4) gene in four out of nine tet(X4)-positive E. coli isolates could be successfully transferred to E. coli EC600 through conjugation. In conclusion, this study characterized the epidemic tet(X4)-bearing plasmids and tet(X4)-associated genetic environment in clinical E. coli strains, suggested the importance of continuous surveillance of such tet(X4)-bearing plasmids to control the increasingly widespread dissemination of tigecycline-resistant pathogens in clinical settings in China.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Feces , Microbial Sensitivity Tests , Phylogeny , Plasmids , Tigecycline , China/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Plasmids/genetics , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Tigecycline/pharmacology , Feces/microbiology , Prevalence , Whole Genome Sequencing , Escherichia coli Proteins/genetics , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genomics
7.
Comput Med Imaging Graph ; 116: 102407, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38880065

ABSTRACT

The gold standard for diagnosing osteoporosis is bone mineral density (BMD) measurement by dual-energy X-ray absorptiometry (DXA). However, various factors during the imaging process cause domain shifts in DXA images, which lead to incorrect bone segmentation. Research shows that poor bone segmentation is one of the prime reasons of inaccurate BMD measurement, severely affecting the diagnosis and treatment plans for osteoporosis. In this paper, we propose a Multi-feature Joint Discriminative Domain Adaptation (MDDA) framework to improve segmentation performance and the generalization of the network in domain-shifted images. The proposed method learns domain-invariant features between the source and target domains from the perspectives of multi-scale features and edges, and is evaluated on real data from multi-center datasets. Compared to other state-of-the-art methods, the feature prior from the source domain and edge prior enable the proposed MDDA to achieve the optimal domain adaptation performance and generalization. It also demonstrates superior performance in domain adaptation tasks on small amount datasets, even using only 5 or 10 images. In this study, MDDA provides an accurate bone segmentation tool for BMD measurement based on DXA imaging.

8.
Front Microbiol ; 15: 1358752, 2024.
Article in English | MEDLINE | ID: mdl-38873147

ABSTRACT

Candida albicans (C. albicans), a microbe commonly isolated from Candida vaginitis patients with vaginal tract infections, transforms from yeast to hyphae and produces many toxins, adhesins, and invasins, as well as C. albicans biofilms resistant to antifungal antibiotic treatment. Effective agents against this pathogen are urgently needed. Antimicrobial peptides (AMPs) have been used to cure inflammation and infectious diseases. In this study, we isolated whole housefly larvae insect SVWC peptide 1 (WHIS1), a novel insect single von Willebrand factor C-domain protein (SVWC) peptide from whole housefly larvae. The expression pattern of WHIS1 showed a response to the stimulation of C. albicans. In contrast to other SVWC members, which function as antiviral peptides, interferon (IFN) analogs or pathogen recognition receptors (PRRs), which are the prokaryotically expressed MdWHIS1 protein, inhibit the growth of C. albicans. Eukaryotic heterologous expression of WHIS1 inhibited C. albicans invasion into A549 and HeLa cells. The heterologous expression of WHIS1 clearly inhibited hyphal formation both extracellularly and intracellularly. Furthermore, the mechanism of WHIS1 has demonstrated that it downregulates all key hyphal formation factors (ALS1, ALS3, ALS5, ECE1, HWP1, HGC1, EFG1, and ZAP1) both extracellularly and intracellularly. These data showed that heterologously expressed WHIS1 inhibits C. albicans invasion into epithelial cells by affecting hyphal formation and adhesion factor-related gene expression. These findings provide new potential drug candidates for treating C. albicans infection.

SELECTION OF CITATIONS
SEARCH DETAIL