Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.317
Filter
Add more filters

Publication year range
1.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35568034

ABSTRACT

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2/genetics
2.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35460644

ABSTRACT

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , RNA, Circular/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic/genetics , mRNA Vaccines
3.
Cell ; 177(2): 370-383.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905475

ABSTRACT

Contractile injection systems (CISs) are cell-puncturing nanodevices that share ancestry with contractile tail bacteriophages. Photorhabdus virulence cassette (PVC) represents one group of extracellular CISs that are present in both bacteria and archaea. Here, we report the cryo-EM structure of an intact PVC from P. asymbiotica. This over 10-MDa device resembles a simplified T4 phage tail, containing a hexagonal baseplate complex with six fibers and a capped 117-nanometer sheath-tube trunk. One distinct feature of the PVC is the presence of three variants for both tube and sheath proteins, indicating a functional specialization of them during evolution. The terminal hexameric cap docks onto the topmost layer of the inner tube and locks the outer sheath in pre-contraction state with six stretching arms. Our results on the PVC provide a framework for understanding the general mechanism of widespread CISs and pave the way for using them as delivery tools in biological or therapeutic applications.


Subject(s)
Photorhabdus/chemistry , Photorhabdus/ultrastructure , Bacteriophage T4/chemistry , Cell Membrane/chemistry , Cryoelectron Microscopy/methods , Models, Molecular , Photorhabdus/metabolism , Protein Conformation , Type VI Secretion Systems/metabolism
4.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569554

ABSTRACT

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA Methylation
5.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38065062

ABSTRACT

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Subject(s)
Leukemia , Myelodysplastic Syndromes , Neoplasms , RNA Methylation , Serine-Arginine Splicing Factors , Humans , Leukemia/genetics , Myelodysplastic Syndromes/genetics , Neoplasms/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Serine-Arginine Splicing Factors/genetics , RNA Methylation/genetics
6.
Nature ; 630(8016): 484-492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811729

ABSTRACT

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Bacteria/virology , Bacteria/genetics , Bacteria/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Chryseobacterium/genetics , Chryseobacterium/immunology , Chryseobacterium/virology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , DNA Cleavage , Genetic Loci/genetics , Models, Molecular , Protein Domains
7.
Mol Cell ; 82(4): 713-715, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35180427

ABSTRACT

In this issue of Molecular Cell, Tegowski et al. established a single-cell DART-seq (scDART-seq) method for m6A site profiling and further revealed the fundamental features of m6A biology in single cells. The findings improve our understating of the intrinsic regulatory and functional mechanisms of m6A in a single-cell basis.

8.
Cell ; 149(1): 101-12, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22445173

ABSTRACT

Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells. We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, diRNAs are recruited by Argonaute 2 (AGO2) to mediate DSB repair. Knock down of Dicer or Ago2 in human cells reduces DSB repair. Our findings reveal a conserved function for small RNAs in the DSB repair pathway. We propose that diRNAs may function as guide molecules directing chromatin modifications or the recruitment of protein complexes to DSB sites to facilitate repair.


Subject(s)
Arabidopsis/metabolism , DNA Breaks, Double-Stranded , DNA Repair , RNA, Plant/metabolism , RNA, Untranslated/metabolism , DEAD-box RNA Helicases/metabolism , Humans , Ribonuclease III/metabolism
9.
Mol Cell ; 75(6): 1188-1202.e11, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31399345

ABSTRACT

The maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment is converted to an environment of embryonic-driven development through dramatic reprogramming. However, how maternally supplied transcripts are dynamically regulated during MZT remains largely unknown. Herein, through genome-wide profiling of RNA 5-methylcytosine (m5C) modification in zebrafish early embryos, we found that m5C-modified maternal mRNAs display higher stability than non-m5C-modified mRNAs during MZT. We discovered that Y-box binding protein 1 (Ybx1) preferentially recognizes m5C-modified mRNAs through π-π interactions with a key residue, Trp45, in Ybx1's cold shock domain (CSD), which plays essential roles in maternal mRNA stability and early embryogenesis of zebrafish. Together with the mRNA stabilizer Pabpc1a, Ybx1 promotes the stability of its target mRNAs in an m5C-dependent manner. Our study demonstrates an unexpected mechanism of RNA m5C-regulated maternal mRNA stabilization during zebrafish MZT, highlighting the critical role of m5C mRNA modification in early development.


Subject(s)
5-Methylcytosine/metabolism , Embryo, Nonmammalian/embryology , Embryonic Development/physiology , RNA Stability/physiology , RNA, Messenger, Stored/metabolism , Zebrafish/embryology , Animals , HeLa Cells , Humans , Mice , RNA, Messenger, Stored/genetics , Zebrafish/genetics
10.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36897579

ABSTRACT

Pancreatic ε-cells producing ghrelin are one type of endocrine cell found in islets, which have been shown to influence other intra-islet cells, especially in regulating the function of ß cells. However, the role of such cells during ß-cell regeneration is currently unknown. Here, using a zebrafish nitroreductase (NTR)-mediated ß-cell ablation model, we reveal that ghrelin-positive ε-cells in the pancreas act as contributors to neogenic ß-cells after extreme ß-cell loss. Further studies show that the overexpression of ghrelin or the expansion of ε-cells potentiates ß-cell regeneration. Lineage tracing confirms that a proportion of embryonic ε-cells can transdifferentiate to ß-cells, and that the deletion of Pax4 enhances this transdifferentiation of ε-cells to ß-cells. Mechanistically, Pax4 binds to the ghrelin regulatory region and represses its transcription. Thus, deletion of Pax4 derepresses ghrelin expression and causes producing more ghrelin-positive cells, enhancing the transdifferentiation of ε-cells to ß-cells and consequently potentiating ß-cell regeneration. Our findings reveal a previously unreported role for ε-cells during zebrafish ß-cell regeneration, indicating that Pax4 regulates ghrelin transcription and mediates the conversion of embryonic ε-cells to ß-cells after extreme ß-cell loss.


Subject(s)
Transcription Factors , Zebrafish , Animals , Ghrelin/metabolism , Homeodomain Proteins/metabolism , Pancreas , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish/metabolism
11.
Nature ; 586(7830): 572-577, 2020 10.
Article in English | MEDLINE | ID: mdl-32726802

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Humans , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Animal , Models, Molecular , Protein Domains , SARS-CoV-2 , Serum/immunology , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Vaccination
12.
Mol Cell Proteomics ; 23(2): 100710, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154690

ABSTRACT

Antibody glycosylation plays a crucial role in the humoral immune response by regulating effector functions and influencing the binding affinity to immune cell receptors. Previous studies have focused mainly on the immunoglobulin G (IgG) isotype owing to the analytical challenges associated with other isotypes. Thus, the development of a sensitive and accurate analytical platform is necessary to characterize antibody glycosylation across multiple isotypes. In this study, we have developed an analytical workflow using antibody-light-chain affinity beads to purify IgG, IgA, and IgM from 16 µL of human plasma. Dual enzymes, trypsin and Glu-C, were used during on-bead digestion to obtain enzymatic glycopeptides and protein-specific surrogate peptides. Ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry was used in order to determine the sensitivity and specificity. Our platform targets 95 glycopeptides across the IgG, IgA, and IgM isotypes, as well as eight surrogate peptides representing total IgG, four IgG classes, two IgA classes, and IgM. Four stable isotope-labeled internal standards were added after antibody purification to calibrate the preparation and instrumental bias during analysis. Calibration curves constructed using serially diluted plasma samples showed good curve fitting (R2 > 0.959). The intrabatch and interbatch precision for all the targets had relative standard deviation of less than 29.6%. This method was applied to 19 human plasma samples, and the glycosylation percentages were calculated, which were comparable to those reported in the literature. The developed method is sensitive and accurate for Ig glycosylation profiling. It can be used in clinical investigations, particularly for detailed humoral immune profiling.


Subject(s)
Glycopeptides , Immunoglobulin G , Humans , Glycosylation , Immunoglobulin G/metabolism , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Glycopeptides/metabolism , Digestion , Immunoglobulin A , Immunoglobulin M
13.
Nucleic Acids Res ; 52(D1): D909-D918, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37870433

ABSTRACT

Diverse individuals age at different rates and display variable susceptibilities to tissue aging, functional decline and aging-related diseases. Centenarians, exemplifying extreme longevity, serve as models for healthy aging. The field of human aging and longevity research is rapidly advancing, garnering significant attention and accumulating substantial data in recent years. Omics technologies, encompassing phenomics, genomics, transcriptomics, proteomics, metabolomics and microbiomics, have provided multidimensional insights and revolutionized cohort-based investigations into human aging and longevity. Accumulated data, covering diverse cells, tissues and cohorts across the lifespan necessitates the establishment of an open and integrated database. Addressing this, we established the Human Aging and Longevity Landscape (HALL), a comprehensive multi-omics repository encompassing a diverse spectrum of human cohorts, spanning from young adults to centenarians. The core objective of HALL is to foster healthy aging by offering an extensive repository of information on biomarkers that gauge the trajectory of human aging. Moreover, the database facilitates the development of diagnostic tools for aging-related conditions and empowers targeted interventions to enhance longevity. HALL is publicly available at https://ngdc.cncb.ac.cn/hall/index.


Subject(s)
Aging , Databases, Factual , Longevity , Multiomics , Aged, 80 and over , Humans , Young Adult , Aging/genetics , Biomarkers , Disease Susceptibility , Genomics , Longevity/genetics
14.
Proc Natl Acad Sci U S A ; 120(7): e2212212120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745802

ABSTRACT

During vertebrate embryogenesis, hematopoietic stem and progenitor cell (HSPC) production through endothelial-to-hematopoietic transition requires suitable developmental signals, but how these signals are accurately regulated remains incompletely understood. Cytoplasmic polyadenylation, which is one of the posttranscriptional regulations, plays a crucial role in RNA metabolism. Here, we report that Cpeb1b-mediated cytoplasmic polyadenylation is important for HSPC specification by translational control of Hedgehog (Hh) signaling during zebrafish early development. Cpeb1b is highly expressed in notochord and its deficiency results in defective HSPC production. Mechanistically, Cpeb1b regulates hemogenic endothelium specification by the Hedgehog-Vegf-Notch axis. We demonstrate that the cytoplasmic polyadenylation element motif-dependent interaction between Cpeb1b and shha messenger RNA (mRNA) in the liquid-like condensates, which are induced by Pabpc1b phase separation, is required for cytoplasmic polyadenylation of shha mRNA. Intriguingly, the cytoplasmic polyadenylation regulates translation but not stability of shha mRNA, which further enhances the Shha protein level and Hh signal transduction. Taken together, our findings uncover the role of Cpeb1b-mediated cytoplasmic polyadenylation in HSPC development and provide insights into how posttranscriptional regulation can direct developmental signals with high fidelity to translate them into cell fate transition.


Subject(s)
Polyadenylation , Zebrafish , Animals , Zebrafish/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Hedgehog Proteins/metabolism , Hematopoiesis/genetics
15.
Plant J ; 119(1): 332-347, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38700955

ABSTRACT

The target of rapamycin (TOR) kinase serves as a central regulator that integrates nutrient and energy signals to orchestrate cellular and organismal physiology in both animals and plants. Despite significant advancements having been made in understanding the molecular and cellular functions of plant TOR kinases, the upstream regulators that modulate TOR activity are not yet fully elucidated. In animals, the translationally controlled tumor protein (TCTP) is recognized as a key player in TOR signaling. This study reveals that two TCTP isoforms from Cucumis sativus, when introduced into Arabidopsis, are instrumental in balancing growth and defense mechanisms against the fungal pathogen Golovinomyces cichoracearum. We hypothesize that plant TCTPs act as upstream regulators of TOR in response to powdery mildew caused by Podosphaera xanthii in Cucumis. Our research further uncovers a stable interaction between CsTCTP and a small GTPase, CsRab11A. Transient transformation assays indicate that CsRab11A is involved in the defense against P. xanthii and promotes the activation of TOR signaling through CsTCTP. Moreover, our findings demonstrate that the critical role of TOR in plant disease resistance is contingent upon its regulated activity; pretreatment with a TOR inhibitor (AZD-8055) enhances cucumber plant resistance to P. xanthii, while pretreatment with a TOR activator (MHY-1485) increases susceptibility. These results suggest a sophisticated adaptive response mechanism in which upstream regulators, CsTCTP and CsRab11A, coordinate to modulate TOR function in response to P. xanthii, highlighting a novel aspect of plant-pathogen interactions.


Subject(s)
Ascomycota , Cucumis sativus , Plant Diseases , Plant Proteins , Cucumis sativus/microbiology , Cucumis sativus/genetics , Cucumis sativus/metabolism , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Tumor Protein, Translationally-Controlled 1 , Signal Transduction , Plants, Genetically Modified , Gene Expression Regulation, Plant , Disease Resistance/genetics
16.
Mol Ther ; 32(6): 1779-1789, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38659224

ABSTRACT

Since the outbreak of monkeypox (mpox) in 2022, widespread concern has been placed on imposing an urgent demand for specific vaccines that offer safer and more effective protection. Using an efficient and scalable circular RNA (circRNA) platform, we constructed four circRNA vaccines that could induce robust neutralizing antibodies as well as T cell responses by expressing different surface proteins of mpox virus (MPXV), resulting in potent protection against vaccinia virus (VACV) in mice. Strikingly, the combination of the four circular RNA vaccines demonstrated the best protection against VACV challenge among all the tested vaccines. Our study provides a favorable approach for developing MPXV-specific vaccines by using a circular mRNA platform and opens up novel avenues for future vaccine research.


Subject(s)
Antibodies, Neutralizing , Monkeypox virus , RNA, Circular , Vaccinia virus , Animals , Mice , Vaccinia virus/genetics , Vaccinia virus/immunology , RNA, Circular/genetics , Antibodies, Neutralizing/immunology , Monkeypox virus/immunology , Monkeypox virus/genetics , Antibodies, Viral/immunology , Vaccinia/prevention & control , Vaccinia/immunology , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Humans , Disease Models, Animal , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
Nucleic Acids Res ; 51(2): 619-630, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36546827

ABSTRACT

Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Casein Kinase II , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Phosphotransferases/genetics , Casein Kinase II/metabolism
18.
Proc Natl Acad Sci U S A ; 119(45): e2205110119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36396123

ABSTRACT

During coordinated development of two neighboring organs from the same germ layer, how precursors of one organ resist the inductive signals of the other to avoid being misinduced to wrong cell fate remains a general question in developmental biology. The liver and anterior intestinal precursors located in close proximity along the gut axis represent a typical example. Here we identify a zebrafish leberwurst (lbw) mutant with a unique hepatized intestine phenotype, exhibiting replacement of anterior intestinal cells by liver cells. lbw encodes the Cdx1b homeoprotein, which is specifically expressed in the intestine, and its precursor cells. Mechanistically, in the intestinal precursors, Cdx1b binds to genomic DNA at the regulatory region of secreted frizzled related protein 5 (sfrp5) to activate sfrp5 transcription. Sfrp5 blocks the mesoderm-derived, liver-inductive Wnt2bb signal, thus conferring intestinal precursor cells resistance to Wnt2bb. These results demonstrate that the intestinal precursors avoid being misinduced toward hepatic lineages through the activation of the Cdx1b-Sfrp5 cascade, implicating Cdx/Sfrp5 as a potential pharmacological target for the manipulation of intestinal-hepatic bifurcations, and shedding light on the general question of how precursor cells resist incorrect inductive signals during embryonic development.


Subject(s)
Hepatocytes , Zebrafish , Animals , Zebrafish/genetics , Hepatocytes/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Liver/metabolism
19.
Proc Natl Acad Sci U S A ; 119(46): e2207201119, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36343244

ABSTRACT

The transcription variation, leading to various forms of transcripts and protein diversity, remains largely unexplored in triple-negative breast cancers (TNBCs). Here, we presented a comprehensive analysis of RNA splicing in breast cancer to illustrate the biological function and clinical implications of tumor-specific transcripts (TSTs) arising from these splicing junctions. Aberrant RNA splicing or TSTs were frequently harbored in TNBC and were correlated with a poor outcome. We discovered a tumor-specific splicing variant of macrophage receptor with collagenous structure-TST (MARCO-TST), which was distinguished from myeloid cell-specific wild-type MARCO. MARCO-TST expression was associated with poor outcomes in TNBC patients and could promote tumor progression in vitro and in vivo. Mechanically, MARCO-TST interacted with PLOD2 and enhanced the stability of HIF-1α, which resulted in the metabolic dysregulation of TNBC to form a hypoxic tumor microenvironment. MARCO-TST was initiated from a de novo alternative transcription initiation site that was activated by a superenhancer. Tumors with MARCO-TST expression conferred greater sensitivity to bromodomain and extraterminal protein inhibitors. This treatment strategy was further validated in patient-derived organoids. In conclusion, our results revealed the transcription variation landscape of TNBC, highlighting MARCO-TST as a crucial oncogenic transcript and therapeutic target.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Carcinogenesis/genetics , RNA Splicing , Cell Proliferation , Tumor Microenvironment
20.
Lancet Oncol ; 25(2): 184-197, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211606

ABSTRACT

BACKGROUND: Triple-negative breast cancers display heterogeneity in molecular drivers and immune traits. We previously classified triple-negative breast cancers into four subtypes: luminal androgen receptor (LAR), immunomodulatory, basal-like immune-suppressed (BLIS), and mesenchymal-like (MES). Here, we aimed to evaluate the efficacy and safety of subtyping-based therapy in the first-line treatment of triple-negative breast cancer. METHODS: FUTURE-SUPER is an ongoing, open-label, randomised, controlled phase 2 trial being conducted at Fudan University Shanghai Cancer Center (FUSCC), Shanghai, China. Eligible participants were females aged 18-70 years, with an Eastern Cooperative Oncology Group performance status of 0-1, and histologically confirmed, untreated metastatic or recurrent triple-negative breast cancer. After categorising participants into five cohorts according to molecular subtype and genomic biomarkers, participants were randomly assigned (1:1) with a block size of 4, stratified by subtype, to receive, in 28-day cycles, nab-paclitaxel (100 mg/m2, intravenously on days 1, 8, and 15) alone (control group) or with a subtyping-based regimen (subtyping-based group): pyrotinib (400 mg orally daily) for the LAR-HER2mut subtype, everolimus (10 mg orally daily) for the LAR-PI3K/AKTmut and MES-PI3K/AKTmut subtypes, camrelizumab (200 mg intravenously on days 1 and 15) and famitinib (20 mg orally daily) for the immunomodulatory subtype, and bevacizumab (10 mg/kg intravenously on days 1 and 15) for the BLIS/MES-PI3K/AKTWT subtype. The primary endpoint was investigator-assessed progression-free survival for the pooled subtyping-based group versus the control group in the intention-to-treat population (all randomly assigned participants). Safety was analysed in all patients with safety records who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT04395989). FINDINGS: Between July 28, 2020, and Oct 16, 2022, 139 female participants were enrolled and randomly assigned to the subtyping-based group (n=69) or control group (n=70). At the data cutoff (May 31, 2023), the median follow-up was 22·5 months (IQR 15·2-29·0). Median progression-free survival was significantly longer in the pooled subtyping-based group (11·3 months [95% CI 8·6-15·2]) than in the control group (5·8 months [4·0-6·7]; hazard ratio 0·44 [95% CI 0·30-0·65]; p<0·0001). The most common grade 3-4 treatment-related adverse events were neutropenia (21 [30%] of 69 in the pooled subtyping-based group vs 16 [23%] of 70 in the control group), anaemia (five [7%] vs none), and increased alanine aminotransferase (four [6%] vs one [1%]). Treatment-related serious adverse events were reported for seven (10%) of 69 patients in the subtyping-based group and none in the control group. No treatment-related deaths were reported in either group. INTERPRETATION: These findings highlight the potential clinical benefits of using molecular subtype-based treatment optimisation in patients with triple-negative breast cancer, suggesting a path for further clinical investigation. Phase 3 randomised clinical trials assessing the efficacy of subtyping-based regimens are now underway. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Hospital Development Center, and Jiangsu Hengrui Pharmaceuticals. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases/therapeutic use , Neoplasm Recurrence, Local/drug therapy , China , Antineoplastic Combined Chemotherapy Protocols/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL