Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 175(4): 1059-1073.e21, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30270039

ABSTRACT

Motivated by the clinical observation that interruption of the mevalonate pathway stimulates immune responses, we hypothesized that this pathway may function as a druggable target for vaccine adjuvant discovery. We found that lipophilic statin drugs and rationally designed bisphosphonates that target three distinct enzymes in the mevalonate pathway have potent adjuvant activities in mice and cynomolgus monkeys. These inhibitors function independently of conventional "danger sensing." Instead, they inhibit the geranylgeranylation of small GTPases, including Rab5 in antigen-presenting cells, resulting in arrested endosomal maturation, prolonged antigen retention, enhanced antigen presentation, and T cell activation. Additionally, inhibiting the mevalonate pathway enhances antigen-specific anti-tumor immunity, inducing both Th1 and cytolytic T cell responses. As demonstrated in multiple mouse cancer models, the mevalonate pathway inhibitors are robust for cancer vaccinations and synergize with anti-PD-1 antibodies. Our research thus defines the mevalonate pathway as a druggable target for vaccine adjuvants and cancer immunotherapies.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cancer Vaccines/immunology , Diphosphonates/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mevalonic Acid/metabolism , rab5 GTP-Binding Proteins/antagonists & inhibitors , Animals , Antigen Presentation , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Cell Line, Tumor , Endosomes/drug effects , Female , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Protein Prenylation , rab5 GTP-Binding Proteins/metabolism
2.
Immunity ; 56(9): 1991-2005.e9, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37659413

ABSTRACT

In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.


Subject(s)
Antiviral Agents , Drosophila , Animals , Drosophila melanogaster , Cyclic GMP , Mammals
3.
Nature ; 621(7980): 840-848, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674084

ABSTRACT

In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.


Subject(s)
Butyrophilins , Lymphocyte Activation , Phosphoproteins , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Animals , Humans , Antigens, CD/immunology , Antigens, CD/metabolism , Butyrophilins/immunology , Butyrophilins/metabolism , Camelids, New World/immunology , Molecular Dynamics Simulation , Phosphoproteins/immunology , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Thermodynamics
4.
Immunity ; 50(4): 1043-1053.e5, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30902636

ABSTRACT

Human Vγ9Vδ2 T cells respond to microbial infections and malignancy by sensing diphosphate-containing metabolites called phosphoantigens, which bind to the intracellular domain of butyrophilin 3A1, triggering extracellular interactions with the Vγ9Vδ2 T cell receptor (TCR). Here, we examined the molecular basis of this "inside-out" triggering mechanism. Crystal structures of intracellular butyrophilin 3A proteins alone or in complex with the potent microbial phosphoantigen HMBPP or a synthetic analog revealed key features of phosphoantigens and butyrophilins required for γδ T cell activation. Analyses with chemical probes and molecular dynamic simulations demonstrated that dimerized intracellular proteins cooperate in sensing HMBPP to enhance the efficiency of γδ T cell activation. HMBPP binding to butyrophilin doubled the binding force between a γδ T cell and a target cell during "outside" signaling, as measured by single-cell force microscopy. Our findings provide insight into the "inside-out" triggering of Vγ9Vδ2 T cell activation by phosphoantigen-bound butyrophilin, facilitating immunotherapeutic drug design.


Subject(s)
Antigens, CD/chemistry , Butyrophilins/chemistry , Lymphocyte Activation , Organophosphates/metabolism , T-Lymphocyte Subsets/immunology , Antigens, CD/metabolism , Binding Sites , Butyrophilins/metabolism , Crystallography, X-Ray , Dimerization , Drug Design , Humans , Hydrogen Bonding , Immunotherapy , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Conformation , Protein Domains , Protein Isoforms/chemistry , Protein Processing, Post-Translational , Receptors, Antigen, T-Cell, gamma-delta , Single-Cell Analysis , Structure-Activity Relationship , T-Lymphocyte Subsets/metabolism
5.
Anal Chem ; 96(4): 1391-1396, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38227719

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a series of organic pollutants with potential cytotoxicity and biotoxicity. Accurate and sensitive detection of trace PFASs in single cells can provide insights into investigating their cytotoxicity, carcinogenicity, and mutagenicity. Here we report the development of an inner-wall coated nanopipette microextraction coupled with induced nanoelectrospray ionization mass spectrometry (InESI-MS) method and its application for rapid, sensitive, and accurate analysis of trace PFASs in single cells. A specially designed inner-wall coated nanopipette was prepared for sampling of the cytoplasm from a single cell, and the trace PFASs in the cytoplasm were selectively enriched into the coating via reversed-phase adsorption, ion bonding adsorption, and π-π interaction mechanisms. After the extraction, the cytoplasm was removed, and the enriched PFASs were then desorbed into some organic solvent, applying an alternating current (AC) voltage to the inner-wall coated nanopipette for InESI-MS analysis. The inner-wall coated nanopipette showed an exhaustive extraction to the trace PFASs in one single cell, and thus, the mass of each target analyte in the cytoplasm can be calculated via an internal standard calibration curve method, avoiding the measurement of ultrasmall volume cytoplasm for one single cell. By using the inner-wall coated nanopipette microextraction coupled with InESI-MS method, trace PFASs accumulated in the LO2 cells with pollutant exposure were successfully detected, and the accumulative behaviors and heterogeneities of PFASs in single cells were explored.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Mass Spectrometry , Solvents , Adsorption , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
6.
Virol J ; 21(1): 60, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454409

ABSTRACT

INTRODUCTION: Chlorogenic acid, the primary active component in Chinese medicines like honeysuckle, exhibits anti-inflammatory and antiviral effects. It has been demonstrated that chlorogenic acid effectively prevents and treats Duck enteritis virus (DEV) infection. This study aims to further elucidate the mechanism by which chlorogenic acid prevents DEV infection. METHODS: Duck embryo fibroblast (DEF) cells were pre-treated with chlorogenic acid before being infected with DEV. Cell samples were collected at different time points for transcriptomic sequencing, while qPCR was used to detect the proliferation of DEV. Additionally, 30-day-old ducks were treated with chlorogenic acid, and their lymphoid organs were harvested for histopathological sections to observe pathological damage. The proliferation of DEV in the lymphoid organs was also detected using qPCR Based on the transcriptomic sequencing results, NF-κB1 gene was silenced by RNAi technology to analyze the effect of NF-κB1 gene on DEV proliferation. RESULTS: Compared to the viral infection group, DEF cells in the chlorogenic acid intervention group exhibited significantly reduced DEV load (P < 0.05). Transcriptomic sequencing results suggested that chlorogenic acid inhibited DEV proliferation in DEF cells by regulating NF-κB signaling pathway. The results of RNAi silencing suggested that in the three treatment groups, compared with the DEV experimental group, there was no significant difference in the effect of pre-transfection after transfection on DEV proliferation, while both the pre-transfection after transfection and the simultaneous transfection group showed significant inhibition on DEV proliferation Furthermore, compared to the virus infection group, ducks in the chlorogenic acid intervention group showed significantly decreased DEV load in their lymphoid organs (P < 0.05), along with alleviated pathological damage such as nuclear pyretosis and nuclear fragmentation. CONCLUSIONS: Chlorogenic acid effectively inhibits DEV proliferation in DEF and duck lymphatic organs, mitigates viral-induced pathological damage, and provides a theoretical basis for screening targeted drugs against DEV.


Subject(s)
Mardivirus , Viruses , Animals , Ducks , Chlorogenic Acid/pharmacology , Fibroblasts , Viruses/genetics , Sequence Analysis, RNA , Mardivirus/genetics
7.
Cell Commun Signal ; 22(1): 200, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561745

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) ranks as the third most common cause of cancer related death globally, representing a substantial challenge to global healthcare systems. In China, the primary risk factor for HCC is the hepatitis B virus (HBV). Aberrant serum glycoconjugate levels have long been linked to the progression of HBV-associated HCC (HBV-HCC). Nevertheless, few study systematically explored the dysregulation of glycoconjugates in the progression of HBV-associated HCC and their potency as the diagnostic and prognostic biomarker. METHODS: An integrated strategy that combined transcriptomics, glycomics, and glycoproteomics was employed to comprehensively investigate the dynamic alterations in glyco-genes, N-glycans, and glycoproteins in the progression of HBV- HCC. RESULTS: Bioinformatic analysis of Gene Expression Omnibus (GEO) datasets uncovered dysregulation of fucosyltransferases (FUTs) in liver tissues from HCC patients compared to adjacent tissues. Glycomic analysis indicated an elevated level of fucosylated N-glycans, especially a progressive increase in fucosylation levels on IgA1 and IgG2 determined by glycoproteomic analysis. CONCLUSIONS: The findings indicate that the abnormal fucosylation plays a pivotal role in the progression of HBV-HCC. Systematic and integrative multi-omic analysis is anticipated to facilitate the discovery of aberrant glycoconjugates in tumor progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Hepatitis B virus/genetics , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Glycomics , Glycoproteins/genetics , Gene Expression Profiling , Polysaccharides
8.
Eur J Clin Pharmacol ; 80(1): 11-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37934204

ABSTRACT

PURPOSE: To develop a population pharmacokinetic (PPK) model for methotrexate (MTX) dosage for all ages, assess the association between concentration and clearance, and determine covariates affecting MTX disposition. METHODS: We compared MTX PK profiles among neonates, children, and adults by performing a systematic literature search for published population MTX models and conducted a Monte Carlo-based meta-analysis. Subsequently, we evaluated study quality and covariates significantly affecting dosage regimens and compared LDMTX and HDMTX PK profiles. RESULTS: Of the total 40 studies included, 34 were HDMTX, and six were LDMTX studies. For HDMTX, three studies involving neonates reported estimated apparent clearances (median, range) of 0.53 (0.27-0.77) L/kg/h; for 14 studies involving children, 0.23 (0.07-0.23) L/kg/h; and for 13 involving adults, 0.11 (0.03-0.22) L/kg/h. Neonates had a higher volume of distribution than children and adults. For LDMTX studies, apparent clearance was 0.085 (0.05-1.68) L/kg/h, and volume of distribution was 0.25 (0.018-0.47) L/kg, lower than those of HDMTX studies, with large between-subject variability. Bodyweight significantly influenced apparent clearance and volume of distribution, whereas renal function mainly influenced clearance. Mutations in certain genes reduced MTX clearance by 8-35.3%, whereas those in others increased it by 15-48%. Body surface area (BSA) significantly influenced apparent clearance with a median reduction of 51% when BSA increased in pediatric patients. CONCLUSIONS: Methotrexate dosage regimens were primarily based on body surface area and renal function. Further studies are needed to evaluate MTX pharmacokinetics and pharmacodynamics in both children (especially infants) and adults.


Subject(s)
Antimetabolites, Antineoplastic , Methotrexate , Adult , Infant , Infant, Newborn , Humans , Child
9.
Cell Mol Biol Lett ; 29(1): 46, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561669

ABSTRACT

BACKGROUND: Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS: Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin ß1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS: (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin ß1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin ß1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin ß1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS: Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.


Subject(s)
Extracellular Vesicles , Urinary Bladder Neoplasms , Animals , Mice , Extracellular Vesicles/metabolism , Glycoconjugates , Integrin beta1/metabolism , Mammals , N-Acetylneuraminic Acid/metabolism , Sialic Acids/metabolism
10.
Xenobiotica ; 54(5): 248-256, 2024 May.
Article in English | MEDLINE | ID: mdl-38634734

ABSTRACT

Prostate inflammation is often treated with drugs which are ineffective. Antibacterial agents fail to reach the prostate epithelium, and the blood-prostate barrier (BPB) may affect the drug transport process. Factors affecting drug efficacy remain unclear.Rats were categorised into groups A and B, corresponding to adulthood and puberty, respectively. Group C included the model of chronic prostate infection. Dialysates of levofloxacin and cefradine were collected from the prostate gland and jugular vein and evaluated. Pharmacokinetic analysis was conducted.The free concentrations of antimicrobials in the prostate and plasma samples of all groups peaked at 20 min, then gradually decreased. The mean AUC0-tprostate/AUC0-tplasma ratio in the levofloxacin group were 0.86, 0.53, and 0.95, and the mean values of AUC0-∞prostate/AUC0-∞plasma ratio were 0.85, 0.63, and 0.97. The corresponding values in the cefradine group were 0.67, 0.30 and 0.84, and 0.66, 0.31, and 0.85, respectively. The mean values in group B were lower than those in group A, and those in group C were higher than those in group B.The maturity of the prostate may affect the ability of the drug to cross the BPB. Infection may disrupt the BPB, affecting drug permeability.


Subject(s)
Anti-Bacterial Agents , Levofloxacin , Prostate , Male , Animals , Prostate/metabolism , Rats , Levofloxacin/pharmacokinetics , Anti-Bacterial Agents/pharmacokinetics
11.
Anal Chem ; 95(19): 7788-7795, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37130082

ABSTRACT

Pollutant exposure causes a series of DNA damage in cells, resulting in the initiation and progression of diseases and even cancers. An investigation of the DNA damage induced by pollutants in living cells is significant to evaluate the cytotoxicity, genotoxicity, and carcinogenicity of environmental exposure, providing critical insight in the exploration of the etiologies of diseases. In this study, we develop a repair enzyme fluorescent probe to reveal the DNA damage caused by an environmental pollutant in living cells by single-cell fluorescent imaging of the most common base damage repair enzyme named human apurinic/apyrimidinic endonuclease 1 (APE1). The repair enzyme fluorescent probe is fabricated by conjugation of an APE1 high affinity DNA substrate on a ZnO2 nanoparticle surface to form a ZnO2@DNA nanoprobe. The ZnO2 nanoparticle serves as both a probe carrier and a cofactor supplier, releasing Zn2+ to activate APE1 generated by pollutant exposure. The AP-site in the DNA substrate of the fluorescent probe is cleaved by the activated APE1, releasing fluorophore and generating fluorescent signals to indicate the position and degree of APE1-related DNA base damage in living cells. Subsequently, the developed ZnO2@DNA fluorescent probe is applied to investigate the APE1-related DNA base damage induced by benzo[a]pyrene (BaP) in living human hepatocytes. Significant DNA base damage by BaP exposure is revealed, with a positive correlation of the damage degree with exposure time in 2-24 h and the concentration in 5-150 µM, respectively. The experimental results demonstrate that BaP has a significant effect on the AP-site damage, and the degree of DNA base damage is time-dependent and concentration-dependent.


Subject(s)
DNA Repair , Zinc Oxide , Humans , Fluorescent Dyes , Benzo(a)pyrene/toxicity , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA
12.
Anal Chem ; 95(37): 13750-13755, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37669419

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is a commonly found environmental pollutant with potential toxicity and health risks to biosystems and ecosystems. Study of the accumulation behavior and heterogeneity of PFOS in biological primary organ cells provides us significant insights to explore its cytotoxicity, carcinogenicity, and mutagenicity. Here a single-cell mass cytometry system was established for the high-throughput analysis of trace PFOS and the exploration of its accumulation behavior and heterogeneity in zebrafish primary organ cells. The single-cell mass cytometry system applied a ∼25 µm constant-inner-diameter capillary as the single-cell generation and transportation channel with an etched tip-end of 40 µm as the nanoelectrospray emitter for mass spectrometric analysis. The single-cell mass cytometry system showed satisfactory semiquantitative performance and sensitivity for analysis of PFOS in single cells, with a high detection throughput of ∼35 cells/min. Subsequently, the liver, intestine, heart, and brain from PFOS-exposed zebrafish (100 pg/µL, 28 days) were dissociated and prepared as cell suspensions, and the cell suspensions were introduced into the single-cell mass cytometry system for high-throughput analysis of PFOS in individual primary organ cells. Significant cellular accumulation heterogeneities were observed, with the highest content in liver cells, followed by intestine cells, then heart cells, and the lowest in brain cells. In addition, the dynamics of PFOS in the zebrafish liver, intestine, heart, and brain cells showed typical violin plot distributions and were well-described using a gamma (γ) function.


Subject(s)
Ecosystem , Zebrafish , Animals , Suspensions , Brain
13.
Anal Chem ; 95(46): 16791-16795, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37937882

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and halogenated derivatives are a series of environmental pollutants with potential toxicity and health risks on biosystems and the ecosystem. Rapid and sensitive analysis of trace PAHs and halogenated PAHs in complex environmental samples is a challenging topic for analytical science. Here we report the development of a nanospray laser-induced plasma ionization MS method for rapid and sensitive analysis of trace PAHs and halogenated PAHs under ambient and open-air conditions. A nanospray tip was applied for loading samples and placed pointing to the MS inlet, being a nanospray emitter with the application of a high voltage. A beam of laser was focused to induce energetic plasma between the nanospray emitter and the MS inlet for ionization of PAHs and halogenated PAHs for mass spectrometric analysis. Meanwhile, an inner-wall naphthyl-coated nanospray emitter was developed and applied as a solid-phase microextraction (SPME) probe for highly selective enrichment of trace PAHs and halogenated PAHs in complex environmental samples, and some organic solvent was applied to desorb the analytes for nanospray laser-induced plasma ionization MS analysis. Satisfactory linearity for each target PAH and halogenated PAH was obtained, with correlation coefficient values (r) no less than 0.9917. The method showed extremely high sensitivity for analysis of trace PAHs and halogenated PAHs in water, with limits of detection (LODs) and quantification (LOQs) of 0.0001-0.02 and 0.0003-0.08 µg/L, respectively. By using the inner-wall naphthyl-coated nanospray laser-induced plasma ionization MS method, sensitive detection of trace PAHs and halogenated PAHs in real sewage and wastewater samples was successfully achieved.

14.
J Hum Genet ; 68(6): 393-398, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36797372

ABSTRACT

Changes in kidney function and the progression of chronic kidney disease (CKD) are associated with the risk of cardiovascular disease (CVD) and influenced by genetic factors. However, the association between genetic variants and kidney function in patients treated with antihypertensive drugs remains uncertain. This study aimed to examine the association between 30 variants locating at the 22 genes and the risk of kidney function evaluated by the estimated glomerular filtration rate (eGFR) in 1911 patients with hypertension from a Chinese community-based longitudinal cohort (including 1220 participants with CKD and 691 without CKD at baseline). By using multivariate linear regression analysis after adjustment for age, sex, traditional cardiovascular risk factors, and the use of antihypertensive drugs, as well as after correction for multiple comparison, patients with rs10767873T allele of the metallophosphoesterase domain containing 2 (MPPED2) gene were associated with higher level of eGFR (ß = 0.041, p = 0.01) and lower levels of serum creatinine (ß = -0.068, p = 0.001) and serum uric acid (ß = -0.047, p = 0.02). But variant rs10767873 was not found to be associated with the risk of CKD, regardless of the types of antihypertensive drugs used. During a median 2.25-year follow-up, 152 CVD events were documented. Interestingly, patients with the rs10767873TT genotype had an increased risk of CVD events (hazard ratio, 1.74, 95% confidence interval, 1.11 to 2.73; p = 0.02) compared with patients carrying the wild-type genotype of rs10767873CC. In conclusion, our findings suggest variant rs10767873 of the MPPED2 gene is associated with kidney function and risk of CVD in Chinese hypertensive patients.


Subject(s)
Cardiovascular Diseases , Hypertension , Renal Insufficiency, Chronic , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/complications , Antihypertensive Agents/therapeutic use , Uric Acid , Risk Factors , Hypertension/complications , Hypertension/genetics , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/genetics , Glomerular Filtration Rate/genetics , Kidney , Phosphoric Diester Hydrolases
15.
Clin Sci (Lond) ; 137(12): 979-993, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37294581

ABSTRACT

Angiopoietin-like protein 8 (ANGPTL8) plays important roles in lipid metabolism, glucose metabolism, inflammation, and cell proliferation and migration. Clinical studies have indicated that circulating ANGPTL8 levels are increased in patients with thoracic aortic dissection (TAD). TAD shares several risk factors with abdominal aortic aneurysm (AAA). However, the role of ANGPTL8 in AAA pathogenesis has never been investigated. Here, we investigated the effect of ANGPTL8 knockout on AAA in ApoE-/- mice. ApoE-/-ANGPTL8-/- mice were generated by crossing ANGPTL8-/- and ApoE-/- mice. AAA was induced in ApoE-/- using perfusion of angiotensin II (AngII). ANGPTL8 was significantly up-regulated in AAA tissues of human and experimental mice. Knockout of ANGPTL8 significantly reduced AngII-induced AAA formation, elastin breaks, aortic inflammatory cytokines, matrix metalloproteinase expression, and smooth muscle cell apoptosis in ApoE-/- mice. Similarly, ANGPTL8 sh-RNA significantly reduced AngII-induced AAA formation in ApoE-/- mice. ANGPTL8 deficiency inhibited AAA formation, and ANGPTL8 may therefore be a potential therapeutic target for AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Peptide Hormones , Humans , Mice , Animals , Angiopoietin-Like Protein 8 , Mice, Knockout, ApoE , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/prevention & control , Aorta/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Angiotensin II/metabolism , Mice, Knockout , Disease Models, Animal , Mice, Inbred C57BL , Aorta, Abdominal/pathology , Peptide Hormones/genetics , Peptide Hormones/adverse effects , Peptide Hormones/metabolism
16.
Virol J ; 20(1): 305, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38115106

ABSTRACT

INTRODUCTION: Duck enteritis virus (DEV) mainly causes infectious diseases characterized by intestinal haemorrhage, inflammation and parenchymal organ degeneration in ducks and other poultry. However, the mechanism by which it causes intestinal damage in ducks is not well understood. Metabolomics can provide an in-depth understanding of the full complexity of the disease. METHODS: In this study, 24 clinically healthy green-shell ducks (weight 1.5 kg ± 20 g) were randomly divided into 2 groups (experimental group, 18; control group, 6). The experimental group was intramuscularly injected with 0.2 mL of DEV virus in solution (TCID50 3.16 × 108 PFU/mL), and the control group was injected with 0.2 mL of sterile normal saline. Duck duodenum and ileum tissue samples were collected at 66 h, 90 h and 114 h post-injection (12 h of fasting before killing), and metabolomics analysis of duck duodenum and ileum tissues at the three time points (66, 90, 114 h) was performed by liquid chromatography-mass spectrometry (LC-MS) to screen for and analyse the potential differentiated metabolites and related signalling pathways. RESULTS: Screening was performed in the positive/negative mode (Pos: Positive ion mode; the ionization of substances at the ion source with positive ions such as H+, NH4+, Na+ and K+; Neg: Negative ion mode; the ionization of substances at the ion source with negative ions such as Cl-, OAc-), and compound abundance was compared to that in the control group. The total number of differentially abundant compounds in the duodenum at 66 h, 90 h and 114 h of DEV infection gradually increased, and metabolites such as cytidine, 2'-deoxyriboside and 4-guanidinobutyric acid were differentially abundant metabolites common to all three time periods. The metabolic pathways related to inflammatory response and immune response were tryptophan acid metabolism, cysteine-methionine metabolism, histidine metabolism and other amino acid metabolism and fat metabolism. Among them, the metabolic pathways with more differentially abundant metabolites were amino acid biosynthesis, cysteine and methionine metabolism, tryptophan metabolism, unsaturated fatty acid biosynthesis and purine metabolism, and the metabolic pathways with more enrichment factors were the IgA-related intestinal immune network pathway and lysosome pathway. Compared with the control group, there were 16 differentially abundant metabolites in the ileum tissue of DEV-infected ducks at 66 h of infection, 52 at 90 h of infection, and 40 at 14 h of infection with TD114. The metabolic pathways with more enriched differentially abundant metabolites were pyrimidine metabolism, tyrosine metabolism, phenylalanine metabolism and tryptophan biosynthesis. The metabolic pathways with the most enrichment factors were the mTOR signalling pathway, ferroptosis pathway, tryptophan metabolism pathway and caffeine metabolism pathway. CONCLUSION: Comparative analysis showed that the number of differentially abundant metabolites in the duodenum and ileum differed to some extent after DEV infection, with significantly more differentially abundant metabolites in duodenal tissues and fewer in ileal tissues; after DEV infection, the highest number of differentially abundant metabolites was obtained at 114 h of DEV infection, followed by the second highest at 90 h of infection and the lowest at 66 h of infection. The common differentially abundant metabolites in duodenal and ileal tissues were prostaglandins, arachidonic acid, and arachidonic ethanolamine. The main metabolic pathways in the duodenum were the IgA-associated intestinal immune network pathway and the lysosomal pathway, and the metabolic pathways with more enriched factors in the ileum were the mTOR signalling pathway, the ferroptosis pathway, and the tryptophan metabolism pathway.


Subject(s)
Cysteine , Ducks , Animals , Tryptophan , TOR Serine-Threonine Kinases , Immunoglobulin A , Ions , Methionine
17.
Compr Rev Food Sci Food Saf ; 22(6): 5063-5085, 2023 11.
Article in English | MEDLINE | ID: mdl-37850384

ABSTRACT

Liubao tea (LBT) is a unique microbial-fermented tea that boasts a long consumption history spanning 1500 years. Through a specific post-fermentation process, LBT crafted from local tea cultivars in Liubao town Guangxi acquires four distinct traits, namely, vibrant redness, thickness, aging aroma, and purity. The intricate transformations that occur during post-fermentation involve oxidation, degradation, methylation, glycosylation, and so forth, laying the substance foundation for the distinctive sensory traits. Additionally, LBT contains multitudinous bioactive compounds, such as ellagic acid, catechins, polysaccharides, and theabrownins, which contributes to the diverse modulation abilities on oxidative stress, metabolic syndromes, organic damage, and microbiota flora. However, research on LBT is currently scattered, and there is an urgent need for a systematical recapitulation of the manufacturing process, the dominant microorganisms during fermentation, the dynamic chemical alterations, the sensory traits, and the underlying health benefits. In this review, current research progresses on the peculiar tea varieties, the traditional and modern process technologies, the substance basis of sensory traits, and the latent bioactivities of LBT were comprehensively summarized. Furthermore, the present challenges and deficiencies that hinder the development of LBT, and the possible orientations and future perspectives were thoroughly discussed. By far, the productivity and quality of LBT remain restricted due to the reliance on labor and experience, as well as the incomplete understanding of the intricate interactions and underlying mechanisms involved in processing, organoleptic quality, and bioactivities. Consequently, further research is urgently warranted to address these gaps.


Subject(s)
Camellia sinensis , Catechin , Tea/chemistry , Camellia sinensis/chemistry , China , Catechin/chemistry , Catechin/metabolism , Oxidative Stress
18.
Clin Genet ; 101(4): 411-420, 2022 04.
Article in English | MEDLINE | ID: mdl-35023146

ABSTRACT

Elevated serum uric acid (UA) level has been shown to be influenced by multiple genetic variants, but it remains uncertain how UA-associated variants differ in their influence on hyperuricemia risk in people taking antihypertensive drugs. We examined a total of 43 UA-related variants at 29 genes in 1840 patients with hypertension from a community-based longitudinal cohort during a median 2.25-year follow-up (including 1031 participants with normal UA, 440 prevalent hyperuricemia at baseline, and 369 new-onset hyperuricemia). Compared with the wild-type genotypes, patients carrying the SLC2A9 rs3775948G allele or the rs13129697G allele had decreased risk of hyperuricemia, while patients carrying the SLC2A9 rs11722228T allele had increased risk of hyperuricemia, after adjustment for cardiovascular risk factors and correction for multiple comparisons; moreover, these associations were modified by the use of diuretics, ß-blockers, or angiotensin converting enzyme inhibitors. The rs10821905A allele of A1CF gene was associated with increased risk of hyperuricemia, and this risk was enhanced by diuretics use. The studied variants were not observed to confer risk for incident cardiovascular events during the follow-up. In conclusion, the genes SLC2A9 and A1CF may serve as potential genetic markers for hyperuricemia risk in relation to antihypertensive drugs therapy in Chinese hypertensive patients.


Subject(s)
Hypertension , Hyperuricemia , Antihypertensive Agents/adverse effects , Diuretics/adverse effects , Glucose Transport Proteins, Facilitative/genetics , Humans , Hypertension/drug therapy , Hypertension/genetics , Hyperuricemia/complications , Hyperuricemia/drug therapy , Hyperuricemia/genetics , Longitudinal Studies , Risk Factors , Uric Acid/therapeutic use
19.
BMC Public Health ; 22(1): 2079, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36380323

ABSTRACT

BACKGROUND: In recent years, the mental health level and physical activity level of Chinese teenagers are not ideal, and all sectors of society are actively reversing this bad situation. The purpose of this study is to test the influence of healthy physical education curriculum model on middle school students' extracurricular sports participation based on the trans-contextual model of motivation (TCM). METHODS: The trial adopts quasi-experimental design comparing equivalent groups. The experimental group adopted the healthy physical education curriculum model in physical education (PE), and the control group adopted the technical-traditional teaching. During the 12 weeks intervention, 327 junior school freshmen completed the test of TCM variables four times as the pre-test, test 2, test 3 and post-test of this experimental study. RESULTS: After the intervention, students' perceived need support in PE, autonomous motivation in PE, autonomous motivation in leisure time (LT)and the amount of extracurricular sports activities in the experimental group have increased significantly. The perceived need support of experimental group students can predict autonomous motivation in PE positively (ß = 0.385, P<.001); Autonomous motivation in PE can predict autonomous motivation in LT positively (ß = 0.462, P<.001); Autonomous motivation in LT can predict the intention of extracurricular sports participation positively, and the direct effect was significant (ß = 0.172, P<.01), the total indirect effect was significant (ß = 0.382, P<.001), the indirect effect of subjective norms was not significant (P>.05); Extracurricular sports participation intention can predict the amount of extracurricular sports activities positively (ß = 0.327, P<.001). CONCLUSIONS: The structural characteristics of healthy physical education curriculum model provide need support for students' learning, improve students' autonomous motivation in and out of PE, and finally promote students' participation in extracurricular sports.


Subject(s)
Motivation , Physical Education and Training , Adolescent , Humans , Personal Autonomy , Students/psychology , Curriculum , Health Status
20.
J Cell Mol Med ; 25(1): 421-433, 2021 01.
Article in English | MEDLINE | ID: mdl-33215878

ABSTRACT

Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea (OSA), a crucial risk factor for cardiovascular diseases. Long non-coding RNAs (lncRNAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. However, whether CIH participates in the modulation of lncRNA profiles during MI is yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed by histology and echocardiography, and lncRNA and mRNA integrated microarrays were screened. MI mouse model showed myocardial hypertrophy, aggravated inflammation and fibrosis, and compromised left ventricle function under CIH. Compared with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identified following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxygenation and were validated by qPCR. The GO terms and KEGG pathways of genes varied significantly by CIH. lncRNA-mRNA correlation further showed that lncRNAs, NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and negatively correlated with Cmbl. The current results demonstrated a causal correlation between CIH and lncRNA alternations during MI, suggesting that lncRNAs might be responsible for MI aggravation under CIH.


Subject(s)
Gene Ontology , Hypoxia/metabolism , Myocardial Infarction/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Animals , Blotting, Western , Disease Models, Animal , Echocardiography , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL