Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Biol ; 21(9): e3002309, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37713449

ABSTRACT

The proton-activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel's state. Moreover, we discovered a protonation-independent voltage activation of the PAC channel that appears to operate through an ion-flux gating mechanism. Through scanning-mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel's proton gating while sparing the voltage-dependent gating. This proton-sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton-sensing mechanisms in the PAC channel that may inspire potential drug development.

2.
Mol Ther ; 32(1): 168-184, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37974400

ABSTRACT

Circular mRNA (cmRNA) is particular useful due to its high resistance to degradation by exonucleases, resulting in greater stability and protein expression compared to linear mRNA. T cell receptor (TCR)-engineered T cells (TCR-T) represent a promising means of treating viral infections and cancer. This study aimed to evaluate the feasibility and efficacy of cmRNA in antigen-specific-TCR discovery and TCR-T therapy. Using human cytomegalovirus (CMV) pp65 antigen as a model, we found that the expansion of pp65-responsive T cells was induced more effectively by monocyte-derived dendritic cells transfected with pp65-encoding cmRNA compared with linear mRNA. Subsequently, we developed cmRNA-transduced pp65-TCR-T (cm-pp65-TCR-T) that specifically targets the CMV-pp65 epitope. Our results showed that pp65-TCR could be expressed on primary T cells for more than 7 days. Moreover, both in vitro killing and in vivo CDX models demonstrated that cm-pp65-TCR-T cells specifically and persistently kill pp65-and HLA-expressing tumor cells, significantly prolonging the survival of mice. Collectively, our results demonstrated that cmRNA can be used as a more effective technical approach for antigen-specific TCR isolation and identification, and cm-pp65-TCR-T may provide a safe, non-viral, non-integrated therapeutic approach for controlling CMV infection, particularly in patients who have undergone allogeneic hematopoietic stem cell transplantation.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Humans , Animals , Mice , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/therapy , Cytomegalovirus/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Viral Matrix Proteins/genetics
3.
J Cell Physiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828783

ABSTRACT

LncRNAs play various effects, mostly by sponging with miRNAs. Based on public databases integrating bioinformatics analyses and further validation in breast cancer (BC) tissue and cell lines, the effect of lncRNA AFAP1-AS1 on breast cancer cell proliferation and migration was verified. It might work via the miR-21/PTEN axis. The expression of AFAP1-AS1, which was significantly upregulated in BC tissues and cell lines, was correlated with old age and lymph node metastasis of patients with BC. Knockdown of AFAP1-AS1 inhibited the proliferation and migration of BC cells in vitro and in vivo. And downregulated miR-21 expression and upregulated PTEN expression additionally. Mechanistically, the knockdown of lncRNA AFAP1-AS1 upregulated PTEN expression and consequently attenuated miR-21-mediated enhanced BC cell proliferation and migration. LncRNA AFAP1-AS1 is a potential prognostic biomarker for BC patients.

4.
J Am Chem Soc ; 146(19): 13488-13498, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709095

ABSTRACT

Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.


Subject(s)
Hydrogen , Peptides , Hydrogen/chemistry , Catalysis , Peptides/chemistry , Models, Molecular , Hydrolysis
5.
Anal Chem ; 96(26): 10809-10816, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38886176

ABSTRACT

Ru-based electrochemiluminescence (ECL) coordination polymers are widely employed for bioanalysis and medical diagnosis. However, commonly used Ru-based coordination polymers face the limitation of low efficiency due to the long distance between the ECL reagent and the coreactant dispersed in detecting solution. Herein, we report a dual-ligand self-enhanced ECL coordination polymer, composed of tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as ECL reactant ligand and ethylenediamine (EDA) as corresponding coreactant ligand into Zn2+ metal node, termed Zn-Ru-EDA. Zn-Ru-EDA shows excellent ECL performance which is attributed to the effective intramolecular electron transport between the two ligands. Furthermore, the dual-ligand polymer allows an anodic low excitation potential (+1.09 V) luminescence. The shift in the energy level of the highest occupied molecular orbital (HOMO) upward after the synthesis of the Zn-Ru-EDA has resulted in a reduced excitation potential. The low excitation potential reduced biomolecular damage and the destruction of the modified electrodes. The ECL biosensor has been constructed using Zn-Ru-EDA with high ECL efficiency for the ultrasensitive detection of a bacterial infection and sepsis biomarker, procalcitonin (PCT), in the range from 1.00 × 10-6 to 1.00 × 10 ng·mL-1 with outstanding selectivity, and the detection limit was as low as 0.47 fg·mL-1. Collectively, the dual-ligand-based self-enhanced polymer may provide an ideal strategy for high ECL efficiency improvement as well as designing new self-enhanced multiple-ligand-based coordination in sensitive biomolecular detection for early disease diagnostics.


Subject(s)
Electrochemical Techniques , Luminescent Measurements , Polymers , Procalcitonin , Ruthenium , Ligands , Polymers/chemistry , Procalcitonin/blood , Procalcitonin/analysis , Humans , Ruthenium/chemistry , Coordination Complexes/chemistry , Limit of Detection , Biosensing Techniques , Ethylenediamines/chemistry
6.
Chemistry ; 30(17): e202304167, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38243781

ABSTRACT

Although fullerene derivatives such as [6,6]-phenyl-C61/C71-butyric acid methyl ester (PC61BM/PC71BM) have dominated the the photoactive acceptor materials in bulk heterojunction organic solar cells (OSCs) for decades, they have several drawbacks such as weak absorption, limited structural tunability, prone to aggregation, and high costs of production. Constructing non-fullerene small molecules with three-dimensional (3D) molecular geometry is one of the strategies to replace fullerenes in OSCs. In this study, a 3D molecule, contorted hexa-cata-hexabenzocoronene tetra perylenediimide (HBC-4-PDI), was designed and synthesized. HBC-4-PDI shows a wide and strong light absorption in the whole UV-vis region as well as suitable energy levels as an acceptor for OSCs. More importantly, the 3D construction effectively reduced the self-aggregation of c-HBC, leading to an appropriate scale phase separation of the blend film morphology in OSCs. A preliminary power conversion efficiency of 2.70 % with a champion open-circuit voltage of 1.06 V was obtained in OSCs with HBC-4-PDI as the acceptor, which was the highest among the previously reported OSCs based on c-HBC derivatives. The results indicated that HBC-4-PDI may serve as a good non-fullerene acceptor for OSCs.

7.
J Nanobiotechnology ; 22(1): 423, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026367

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by synovitis and cartilage destruction. The active compound, icariin (ICA), derived from the herb Epimedium, exhibits potent anti-inflammatory properties. However, its clinical utility is limited by its water insolubility, poor permeability, and low bioavailability. To address these challenges, we developed a multifunctional drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA to target active macrophages in synovial tissue and modulate macrophage polarization from M1 to M2. High-performance liquid chromatography analysis confirmed a 92.4 ± 0.008% loading efficiency for ADSCs-EXO-ICA. In vitro studies utilizing cellular immunofluorescence (IF) and flow cytometry demonstrated significant inhibition of M1 macrophage proliferation by ADSCs-EXO-ICA. Enzyme-linked immunosorbent assay, cellular transcriptomics, and real-time quantitative PCR indicated that ADSCs-EXO-ICA promotes an M1-to-M2 phenotypic transition by reducing glycolysis through the inhibition of the ERK/HIF-1α/GLUT1 pathway. In vivo, ADSCs-EXO-ICA effectively accumulated in the joints. Pharmacodynamic assessments revealed that ADSCs-EXO-ICA decreased cytokine levels and mitigated arthritis symptoms in collagen-induced arthritis (CIA) rats. Histological analysis and micro computed tomography confirmed that ADSCs-EXO-ICA markedly ameliorated synovitis and preserved cartilage. Further in vivo studies indicated that ADSCs-EXO-ICA suppresses arthritis by promoting an M1-to-M2 switch and suppressing glycolysis. Western blotting supported the therapeutic efficacy of ADSCs-EXO-ICA in RA, confirming its role in modulating macrophage function through energy metabolism regulation. Thus, this study not only introduces a drug delivery system that significantly enhances the anti-RA efficacy of ADSCs-EXO-ICA but also elucidates its mechanism of action in macrophage function inhibition.


Subject(s)
Adipose Tissue , Arthritis, Rheumatoid , Exosomes , Flavonoids , Macrophages , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Exosomes/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Adipose Tissue/cytology , Male , Arthritis, Experimental/drug therapy , Rats, Sprague-Dawley , Drug Delivery Systems/methods , Stem Cells/metabolism , Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects
8.
Cancer Sci ; 114(2): 619-629, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36221784

ABSTRACT

Vimentin expression in tumor tissues and the tumor-stroma ratio (TSR) have been demonstrated as strong prognostic factors for cancer patients, but whether they are predictive markers of neoadjuvant chemoradiotherapy (nCRT) outcome in locally advanced rectal cancer (LARC) patients is poorly understood. This study aimed to explore the predictive significance of vimentin and TSR combined for nCRT response in LARC patients. Imaging mass cytometry (IMC) was performed to determine the association of vimentin and TSR with nCRT response in six LARC patients [three achieved pathological complete response (pCR), three did not]. Immunohistochemistry (IHC) for vimentin and TSR on biopsy tissues before nCRT and logistic regression analysis were performed to further evaluate their predictive value for treatment responses in a larger patient cohort. A trend of decreased vimentin expression and increased TSR in the pCR group was revealed by IMC. In the validation group, vimentin [odds ratio (OR) 0.260, 95% confidence interval (CI) 0.102-0.602, p = 0.002] and TSR (OR 4.971, 95% CI 1.933-15.431, p = 0.002) were associated with pCR by univariate analysis. Patients in the vimentin-low/TSR-low or vimentin-high/TSR-high (OR 5.211, 95% CI 1.248-35.582, p = 0.042) and vimentin-low/TSR-high groups (OR 11.846, 95% CI 3.197-77.079, p = 0.001) had significantly higher odds of pCR. By multivariate analysis, only the combination of vimentin and TSR was an independent predictor for nCRT response (OR 9.324, 95% CI 2.290-63.623, p = 0.006). Our study suggested that the combined assessment of vimentin and TSR can provide additive significance and may be a promising indicator of nCRT response in LARC patients.


Subject(s)
Neoplasms, Second Primary , Rectal Neoplasms , Humans , Rectal Neoplasms/pathology , Neoadjuvant Therapy , Vimentin , Chemoradiotherapy/methods , Rectum/pathology , Retrospective Studies
9.
Anal Chem ; 95(32): 12097-12103, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37531089

ABSTRACT

Seeking and constructing superior photoactive materials have the potential to improve the performance of photoelectrochemical (PEC) biosensors. In this work, we proposed a novel mimosa-like ternary inorganic composite with a significantly enhanced light-harvesting ability and photogenerated carrier separation rate. This ternary photoactive material was obtained via electrodeposition of gold nanoparticles (Au) on the surface of transition metal sulfide composite of CdS and NiS (CdS-NiS/Au). The experimental results showed that the high initial photocurrent was acquired on CdS-NiS/Au (68-fold higher than that of individual CdS) with the synergistic effect of p-n heterojunction, Schottky junction, and the eminent optical properties of gold nanoparticles. Meanwhile, using silver nanoclusters prepared by link DNA protection as an effective quencher, integrating the duplex-specific nuclease-assisted rolling circle amplification strategy, a "Signal ON" PEC biosensor was fabricated for the detection of microRNA 21 (miRNA 21). With the release of the quencher, the recovered photocurrent is able to achieve determination of miRNA 21 within the range from 10 aM to 1 pM with a detection limit down to 4.6 aM (3σ). Importantly, this work not only provides a superb idea for designing ternary inorganic heteromaterials with exceptional photoactive ability but also allows the detection of other biomarkers by selecting appropriate recognition units.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Mimosa , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
10.
Bioorg Chem ; 131: 106337, 2023 02.
Article in English | MEDLINE | ID: mdl-36603244

ABSTRACT

With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 µM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 µM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 µM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.


Subject(s)
Anti-Bacterial Agents , Arginine , Drug Design , Glycyrrhetinic Acid , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Arginine/biosynthesis , Escherichia coli/drug effects , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Hydrogen Sulfide/metabolism
11.
J Assist Reprod Genet ; 40(3): 537-552, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36695944

ABSTRACT

PURPOSE: To elucidate the characterization of extracellular vesicles (EVs) in the follicular fluid-derived extracellular vesicles (FF-EVs) and discover critical molecules and signaling pathways associating with the etiology and pathobiology of PCOS, the differentially expressed miRNAs (DEmiRNAs) and differentially expressed proteins profiles (DEPs) were initially explored and combinedly analyzed. METHODS: First, the miRNA and protein expression profiles of FF-EVs in PCOS patients and control patients were compared by RNA-sequencing and tandem mass tagging (TMT) proteomic methods. Subsequently, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyze the biological function of target genes of DEmiRNAs and DEPs. Finally, to discover the functional miRNA-target gene-protein interaction pairs involved in PCOS, DEmiRs target gene datasets and DEPs datasets were used integratedly. RESULTS: A total of 6 DEmiRNAs and 32 DEPs were identified in FF-EVs in patients with PCOS. Bioinformatics analysis revealed that DEmiRNAs target genes are mainly involved in thiamine metabolism, insulin secretion, GnRH, and Apelin signaling pathway, which are closely related to the occurrence of PCOS. DEPs also closely related to hormone metabolism processes such as steroid hormone biosynthesis. In the analysis integrating DEmiRNAs target genes and DEPs, two molecules, GRAMD1B and STPLC2, attracted our attention that are closely associated with cholesterol transport and ceramide biosynthesis, respectively. CONCLUSION: Dysregulated miRNAs and proteins in FF-EVs, mainly involving in hormone metabolism, insulin secretion, neurotransmitters regulation, adipokine expression, and secretion, may be closely related to PCOS. The effects of GRAMD1B and STPLC2 on PCOS deserve further study.


Subject(s)
Extracellular Vesicles , MicroRNAs , Polycystic Ovary Syndrome , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Follicular Fluid/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Proteomics , Adipokines/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism
12.
Plant Dis ; 107(9): 2830-2834, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37707825

ABSTRACT

Tea leaf spot caused by Didymella bellidis can seriously reduce the productivity and quality of tea (Camellia sinensis var. sinensis) leaves in Guizhou Province, southwest China. Analysis of the relationship between messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) of tea could provide insights into the plant-pathogen interaction. In this study, high-throughput sequencing of mRNAs and lncRNAs from tea leaves during infection by D. bellidis was conducted using the Illumina Novaseq 6000 platform. Infection by D. bellidis hyphae resulted in up- or downregulation of 553 and 191 of the differentially expressed mRNAs (DEmRNAs), respectively. As the S gene number (total number of genes with significantly differential expression annotated in the specified Gene Ontology [GO] database), three were enriched with respect to the defense response to the fungus at the biological process level. Expression of the DEmRNAs peroxidase 21 (TEA000222.1) and mcht-2 (TEA013240.1) originating from tea leaves were upregulated during challenge by D. bellidis hyphae, whereas expression of the LRR receptor-like serine/threonine-protein kinase ERECTA (TEA016781.1) gene was downregulated. The infection of D. bellidis hyphae resulted in up- or downregulation of 227 and 958 of the differentially expressed lncRNAs (DElncRNAs). The DEmRNAs associated with uncharacterized LOC101499401 (TEA015626.1), uncharacterized protein (TEA014125.1), structural maintenance of chromosomes protein 1 (TEA001660.1), and uncharacterized protein (TEA017727.1) occurred as a result of cis regulation by DElncRNAs MSTRG.20036, MSTRG.3843, MSTRG.26132, and MSTRG.56701, respectively. The expression profiling and lncRNA/mRNA association prediction in the tea leaves infected by D. bellidis will provide a valuable resource for further research into disease resistance.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , Gene Expression Profiling/methods , RNA, Messenger/genetics , Tea
13.
Int J Mol Sci ; 24(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37108519

ABSTRACT

Latent HIV is a key factor that makes AIDS difficult to cure. Highly effective and specific latent HIV activators can effectively activate latent HIV, and then combined with antiretroviral therapy to achieve a functional cure of AIDS. Here, four sesquiterpenes (1-4) including a new one (1), five flavonoids (5-9) including three biflavonoid structures, and two lignans (10 and 11) were obtained from the roots of Wikstroemia chamaedaphne. Their structures were elucidated through comprehensive spectroscopic analyses. The absolute configuration of 1 was determined by experimental electronic circular dichroism. NH2 cell model was used to test the activity of these 11 compounds in activating latent HIV. Oleodaphnone (2) showed the latent HIV activation effect as well as the positive drug prostratin, and the activation effect was time- and concentration-dependent. Based on transcriptome analysis, the underlying mechanism was that oleodaphnone regulated the TNF, C-type lectin receptor, NF-κB, IL-17, MAPK, NOD-like receptor, JAK-Stat, FoxO, and Toll-like receptor signaling pathways. This study provides the basis for the potential development of oleodaphnone as an effective HIV latency-reversing agent.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV Infections , HIV-1 , Humans , Virus Activation , Virus Latency , HIV Infections/drug therapy , HIV Infections/metabolism , HIV-1/genetics , Gene Expression Profiling , CD4-Positive T-Lymphocytes/metabolism
14.
Anal Chem ; 94(42): 14682-14690, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36222228

ABSTRACT

Designing and screening highly efficient and cost-effective luminophores have always been a challenge to develop sensitive electrochemiluminescence (ECL) biosensors. Herein, polyethyleneimine nanoparticles (PEI NPs), a kind of nonconjugated polymer (NCP) NPs with tertiary amine clusters, were developed as an ECL luminophore. Specifically, PEI NPs were synthesized by a one-step hydrothermal method using PEI and formaldehyde. The properties of PEI NPs were investigated in detail using photochemical and electrochemical techniques. The results showed cluster-dominated luminescence of tertiary amines in PEI NPs via "through-space conjugation". This non-negligible ECL performance (at 631 nm) was also verified by the initiated reduction-oxidation process. With persulfate as a coreactant, PEI NPs acted as both the luminophore and coreaction accelerator to enhance the ECL intensity remarkably, which was eightfold higher than that of isolated PEI. Moreover, choosing dopamine as the model target, a highly sensitive "signal off" ternary ECL sensor was constructed utilizing PEI NPs as the luminophore. Dopamine could be oxidized to benzoquinone at the sensing interface, quenching the signal via ECL energy transfer. Free from any signal amplification, the proposed sensor achieved a low detection limit (4.3 nM) for target monitoring with good selectivity and stability. This strategy not only provides a unique perspective for designing novel efficient and facile ECL luminophores of tertiary amines but also broadens the biological application of NCP NPs.


Subject(s)
Nanoparticles , Polyethyleneimine , Luminescent Measurements/methods , Dopamine , Nanoparticles/chemistry , Benzoquinones , Formaldehyde
15.
Bioorg Chem ; 128: 106066, 2022 11.
Article in English | MEDLINE | ID: mdl-35964500

ABSTRACT

Podophyllotoxin's undifferentiated cytotoxicity and poor selectivity limit its clinical application. To improve above disadvantages, conjugation of bile acids with podophyllotoxin could improve cell line selectivity of liver cancer to achieve clinical translation further. Enlightened by the bile acids' moiety magic characters, thirty podophyllotoxin-linked bile acid derivatives had been designed and synthesized. The cytotoxicity of these compounds in vitro was evaluated on HepG2, HCT-116, A549 and MDCK cell lines. After conjunction with bile acids, most of the derivatives (IC50 = 0.066-0.831 µM) were more potent against above three types of tumor cells than Etoposide (VP-16, IC50 = 4.319-41.080 µM) and exhibited similar antitumor activity compared with doxorubicin (DOX, IC50 = 0.230-0.745 µM). Moreover, structure-activity relationship displayed the length of the linker chain between podophyllotoxin and bile acids affected the cytotoxicity. Especially, compound 23 exhibited strong activity against HepG2 cell lines (IC50 = 0.188 ± 0.01 µM) than MDCK cell lines (IC50 = 4.780 ± 0.50 µM) and its SI (IC50MDCK/IC50HepG2) value of compound 23 was 25.4. Further antitumor mechanism studies showed that compound 23 acted as Topo Ⅱ inhibition and induced cell apoptosis with S cell cycle arrest. In particular, compound 23 showed valid antitumor efficacy at 10 mg/kg by intraperitoneal administration with a tumor inhibition rate of 60.9% in the Hepa1-6 xenograft mice model. The current research displayed that introduction of bile acids contributed to improve selectivity and activity to cell, and compound 23 could be a promising anti-tumor candidate.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Bile Acids and Salts/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Etoposide/pharmacology , Glucosides/pharmacology , Humans , Mice , Molecular Structure , Podophyllotoxin , Structure-Activity Relationship
16.
Phytopathology ; 112(2): 460-463, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34110250

ABSTRACT

Tea leaf spot, caused by Lasiodiplodia theobromae, is an important disease that can seriously decrease the production and quality of tea (Camellia sinensis (L.) O. Kuntze) leaves. The analysis of circular RNA (circRNA) in tea leaves after infection by the pathogen could improve understanding about the mechanism of host-pathogen interactions. In this study, high-performance sequencing of circRNA from C. sinensis Fuding-dabaicha leaves that had been infected with L. theobromae was conducted using the Illumina HiSeq 4000 platform. In total, 192 and 153 differentially expressed circRNAs from tea leaves were significantly up- and downregulated, respectively, after infection with L. theobromae. A gene ontology analysis indicated that the differentially expressed circRNA-hosting genes for DNA binding were significantly enriched. The genes with significantly differential expressions that were annotated in the specified database (S genes) were σ factor E isoform 1, triacylglycerol lipase SDP1, DNA-directed RNA polymerase III subunit 2, WRKY transcription factor WRKY24, and regulator of nonsense transcripts 1 homolog. A Kyoto Encyclopedia of Genes and Genomes analysis indicated that the significantly enriched circRNA-hosting genes involved in the plant-pathogen interaction pathway were Calmodulin-domain protein kinase 5 isoform 1, probable WRKY transcription factor 33, U-box domain-containing protein 35, probable inactive receptor-like protein kinase At3g56050, WRKY transcription factor WRKY24, mitogen-activated protein kinase kinase kinase YODA, SGT1, and protein DGS1. Functional annotation of circRNAs in tea leaves infected by L. theobromae will provide a valuable resource for future research on host-pathogen interactions.


Subject(s)
Ascomycota , Camellia sinensis , Ascomycota/genetics , Gene Expression Profiling , Plant Diseases , RNA, Circular , Tea
17.
J Nanobiotechnology ; 20(1): 116, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248067

ABSTRACT

BACKGROUND: Oral administration of insulin (INS) could be absorbed into systemic circulation only if the carrier protected it from the hostile gastrointestinal conditions. However, traditional macromolecular carriers have not totally overcome challenges in addressing these biological barriers. RESULT: In this study, inspired by small molecule natural products (SMNPs), we demonstrate the multi-functional self-assembly nanoparticles (BA-Al NPs) originating from baicalin (BA) and AlCl3 through coordination bonds and hydrogen bonds. As a novel carrier for oral insulin delivery (INS@BA-Al NPs), it displayed effective capacity in pH stimuli-responsive insulin release, intestinal mucoadhesion and transepithelial absorption enhance. Meanwhile, BA improved the paracellular permeability for insulin absorption, because of its downregulation at both mRNA and protein level on internal tight junction proteins. In vivo experiments exhibited remarkable bioavailability of INS and an ideal glucose homeostasis in the type I diabetic rat model. CONCLUSION: This study offers a novel frontier of multi-functional carriers based on SMNPs with self-assembly character and bioactivity, which could be a promising strategy for diabetes therapy.


Subject(s)
Biological Products , Diabetes Mellitus, Experimental , Nanoparticles , Administration, Oral , Animals , Diabetes Mellitus, Experimental/drug therapy , Drug Carriers/chemistry , Drug Delivery Systems , Insulin , Nanoparticles/chemistry , Rats , Tight Junctions
18.
Plant Dis ; 106(4): 1286-1290, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34433319

ABSTRACT

Tea leaf spot, caused by Didymella segeticola, is an important disease which negatively affects the productivity and the quality of tea leaves. During infection by the pathogen, competing endogenous RNAs (ceRNAs) from tea leaves could contribute to achieving pathogenicity. In this study, circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs), constituting ceRNAs, which share binding sites on microRNAs (miRNAs), and messenger RNAs (mRNAs) from infected and uninfected leaves of tea (Camellia sinensis 'Fuding-dabaicha') were sequenced and analyzed, and the identity and expression levels of the target genes of miRNA-mRNA and miRNA-lncRNA/circRNA were predicted. Analysis indicated that 10 mRNAs were bound by 20 miRNAs, 66 lncRNAs were bound by 40 miRNAs, and 17 circRNAs were bound by 29 miRNAs, respectively. For the regulation modes of ceRNAs, five ceRNA pairs were identified by the correlation analysis of lncRNA-miRNA-mRNA. For instance, expression of the xyloglucan endotransglycosylase gene in infected leaves was downregulated at the level of mRNA through miRNA PC-5p-3511474_3 binding with lncRNA TEA024202.1:MSTRG.37074.1. Gene annotation indicated that expression of this gene was significantly enriched in cell wall biogenesis and in the pathway of plant hormone signal transduction. The functional analysis of ceRNAs isolated from infected tea leaves will provide a valuable resource for future research on D. segeticola pathogenicity.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Ascomycota , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Tea
19.
Angew Chem Int Ed Engl ; 60(31): 17164-17170, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34014019

ABSTRACT

The structural arrangement of amino acid residues in native enzymes underlies their remarkable catalytic properties, thus providing a notable point of reference for designing potent yet simple biomimetic catalysts. Herein, we describe a minimalistic approach to construct a dipeptide-based nano-superstructure with enzyme-like activity. The self-assembled biocatalyst comprises one peptide as a single building block, readily synthesized from histidine. Through coordination with zinc ion, the peptide self-assembly procedure allows the formation of supramolecular ß-sheet ordered nanocrystals, which can be used as basic units to further construct higher-order superstructure. As a result, remarkable hydrolysis activity and enduring stability are demonstrated. Our work exemplifies the use of a bioinspired supramolecular assembly approach to develop next-generation biocatalysts for biotechnological applications.


Subject(s)
Nanoparticles/chemistry , Peptides/chemistry , Histidine/chemistry , Hydrolysis , Particle Size , Peptides/chemical synthesis
20.
Electrophoresis ; 41(18-19): 1584-1591, 2020 10.
Article in English | MEDLINE | ID: mdl-32683752

ABSTRACT

In the present research, field-amplified sample injection-CZE (FASI-CZE) coupled with a diode array detector was established to determine trace level sulfa antibiotic. Sulfathiazole, sulfadiazine, sulfamethazine, sulfadimethoxine, sulfamethoxazole, and sulfisoxazole were selected as analytes for the experiments. The background electrolyte solution consisted of 70.0 mmol/L borax and 60.0 mmol/L boric acid (including 10% methanol, pH 9.1). The plug was 2.5 mmol/L borax, which was injected into the capillary at a pressure of 0.5 psi for 5 s. Then the sample was injected into the capillary at an injection voltage of -10 kV for 20 s. The electrophoretic separation was carried out under a voltage of +19 kV. The capillary temperature was maintained at 20˚C throughout the analysis, and six sulfonamides were completely separated within 35 min. Compared with pressure injection-CZE, the sensitivity of FASI-CZE was increased by 6.25-10.0 times, and the LODs were reduced from 0.2-0.5 to 0.02-0.05 µg/mL. The method was applied to the determination of sulfonamides in river water and particulate matter samples. The recoveries were 78.59-106.59%. The intraday and interday precisions were 2.89-7.35% and 2.77-7.09%, respectively. This provides a simpler and faster method for the analysis of sulfa antibiotic residues in environmental samples.


Subject(s)
Anti-Bacterial Agents/analysis , Electrophoresis, Capillary/methods , Particulate Matter/chemistry , Sulfonamides/analysis , Limit of Detection , Reproducibility of Results , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL