Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37605050

ABSTRACT

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Subject(s)
Corneal Neovascularization , Dry Eye Syndromes , Rats , Humans , Mice , Animals , Female , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rodentia/metabolism , Endothelial Cells/metabolism , Angiogenesis , Inflammation/drug therapy , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/chemically induced , STAT3 Transcription Factor/metabolism
2.
Chem Biodivers ; 21(4): e202400256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361228

ABSTRACT

The plant species, Sonchus wightianus DC., was historically used in China for both medicinal and dietary uses. In present study, seven new guaiane sesquiterpenoids (1-7) and one cytochalasin (8), along with five known guaianes (9-13) and two known cytochalasins (14 and 15), were isolated from the whole plants of S. wightianus. These guaianes showed structural variations in the substituents at C-8 and/or C-15, and compounds 6 and 7 are two sesquiterpenoid glycoside derivatives. Their structures were determined by extensive analysis of spectroscopic, electronic circular dichroism, and X-ray diffraction data, and chemical method. Biological tests revealed that compounds 5 and 8 are potent and selective immunosuppressive reagents.


Subject(s)
Sesquiterpenes , Sonchus , Cytochalasins/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , X-Ray Diffraction , China , Molecular Structure
3.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920362

ABSTRACT

Twelve compounds, comprising of four new ones, 6ß,7α-limondiol (1) and ethyl 19-hydroxyisoobacunoate diosphenol (2), N-benzoyl 3-prenyltyramine (9) and 9-O-methyl integrifoliodiol (12), were isolated from the twigs with leaves of Tetradium trichotomum. The structures were elucidated by analysis of MS, NMR, and single-crystal X-ray diffraction. Compounds 1, 6, 8, 9 and 12 exhibited immunosuppressive activities in vitro against the proliferation of ConA-induced T lymphocytes and LPS-induced B cells.

4.
Angew Chem Int Ed Engl ; 63(7): e202318550, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38155101

ABSTRACT

Noncanonical amino acids (ncAAs) containing tertiary alcohols are valuable as precursors of natural products and active pharmaceutical ingredients. However, the assembly of such ncAA scaffolds from simple material by C-C bond formation remains a challenging task due to the presence of multiple stereocenters and large steric hindrance. In this study, we present a novel solution to this problem through highly selective enzymatic decarboxylative aldol addition. This method allows for the streamlined assembly of multifunctionalized ncAAs with γ-tertiary alcohols from readily available materials, such as L -aspartatic acid and isatins, vicinal diones and keto esters. The modularity of electrophiles furnished four classes of ncAAs with decent efficiency as well as excellent site and stereocontrol. Computational modeling was employed to gain detailed insight into the catalytic mechanism and to provide a rationale for the observed selectivities. The method offers a single-step approach to producing multifunctionalized ncAAs, which can be directly utilized in peptide synthesis and bioactivity assessment.


Subject(s)
Alcohols , Amino Acids , Amino Acids/chemistry , Catalysis
5.
J Exp Bot ; 74(6): 2005-2015, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36573619

ABSTRACT

Emerging evidence reveals that the three-dimensional (3D) chromatin architecture plays a key regulatory role in various biological processes of plants. However, information on the 3D chromatin architecture of the legume model plant Medicago truncatula and its potential roles in the regulation of response to mineral nutrient deficiency are very limited. Using high-resolution chromosome conformation capture sequencing, we identified the 3D genome structure of M. truncatula in terms of A/B compartments, topologically associated domains (TADs) and chromatin loops. The gene density, expressional level, and active histone modification were higher in A compartments than in B compartments. Moreover, we analysed the 3D chromatin architecture reorganization in response to phosphorus (P) deficiency. The intra-chromosomal cis-interaction proportion was increased by P deficiency, and a total of 748 A/B compartment switch regions were detected. In these regions, density changes in H3K4me3 and H3K27ac modifications were associated with expression of P deficiency-responsive genes involved in root system architecture and hormonal responses. Furthermore, these genes enhanced P uptake and mobilization by increasing root surface area and strengthening signal transduction under P deficiency. These findings advance our understanding of the potential roles of 3D chromatin architecture in responses of plants in general, and in particular in M. truncatula, to P deficiency.


Subject(s)
Chromatin , Medicago truncatula , Chromatin/metabolism , Phosphorus/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism
6.
J Nat Prod ; 86(6): 1606-1614, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37307145

ABSTRACT

Chemical investigation of the twigs of Cleistanthus sumatranus (Phyllanthaceae) led to the isolation of 10 undescribed lignans, sumatranins A-J (1-10). Compounds 1-4 are unprecedented furopyran lignans characterized by a unique 2,3,3a,9a-tetrahydro-4H-furo[2,3-b]chromene heterotricyclic framework. Compounds 9 and 10 are rare 9'-nor-dibenzylbutane lignans. Structures were established based on analyses of spectroscopic data, X-ray crystallographic data, and experimental ECD spectra. Immunosuppressive assays revealed compounds 3 and 9 displayed moderate inhibitory effects with good selectivity indexes against LPS-induced B lymphocyte proliferation.


Subject(s)
Lignans , Malpighiales , Lignans/pharmacology , Lignans/chemistry , Molecular Structure
7.
Bioorg Chem ; 141: 106886, 2023 12.
Article in English | MEDLINE | ID: mdl-37778191

ABSTRACT

Extensive phytochemical investigation of the seeds of Tripterygium wilfordii led to the identification of 54 polyesterified dihydro-ß-agarofuran-type sesquiterpenoids, including 27 previously undescribed ones, named Tripwilin I-XXVII (1-27). Comprehensive spectroscopic and single-crystal X-ray diffraction analyses, along with electronic circular dichroism (ECD) calculations were used for the structural elucidation of the new compounds. Biological assay revealed that 37 compounds among the isolates exhibited significant inhibition against osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL) at 10 µM. Further investigation indicated that Triptogelin C-3 (54), with the most potent osteoclastogenesis inhibitory activity, regulated the osteoclast marker genes (MMP-9, c-Fos, CTSK, and TRAP) and proteins in a dose-dependent manner in vitro. Besides, celaforin D-1 (28), 1α,6ß,15-triacetoxy-8α,9α-dibenzoyloxy-2α-hydroxydihydro-ß-agarofuran (34), triptogelin A-2 (37), and chiapen D (49) showed moderate suppressive effects on the proliferation of T and B lymphocytes with IC50 values ranging between 8.1 ± 0.8 and 19.0 ± 0.9 µM.


Subject(s)
Sesquiterpenes , Tripterygium , Tripterygium/chemistry , Osteogenesis , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Seeds , Molecular Structure
8.
BMC Biol ; 20(1): 274, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482454

ABSTRACT

BACKGROUND: Root development and function have central roles in plant adaptation to the environment. The modification of root traits has additionally been a major driver of crop performance since the green revolution; however, the molecular underpinnings and the regulatory programmes defining root development and response to environmental stress remain largely unknown. Single-cell reconstruction of gene regulatory programmes provides an important tool to understand the cellular phenotypic variation in complex tissues and their response to endogenous and environmental stimuli. While single-cell transcriptomes of several plant organs have been elucidated, the underlying chromatin landscapes associated with cell type-specific gene expression remain largely unexplored. RESULTS: To comprehensively delineate chromatin accessibility during root development of an important crop, we applied single-cell ATAC-seq (scATAC-seq) to 46,758 cells from rice root tips under normal and heat stress conditions. Our data revealed cell type-specific accessibility variance across most of the major cell types and allowed us to identify sets of transcription factors which associate with accessible chromatin regions (ACRs). Using root hair differentiation as a model, we demonstrate that chromatin and gene expression dynamics during cell type differentiation correlate in pseudotime analyses. In addition to developmental trajectories, we describe chromatin responses to heat and identify cell type-specific accessibility changes to this key environmental stimulus. CONCLUSIONS: We report chromatin landscapes during rice root development at single-cell resolution. Our work provides a framework for the integrative analysis of regulatory dynamics in this important crop organ at single-cell resolution.


Subject(s)
Meristem , Oryza , Chromatin/genetics , Oryza/genetics
10.
Food Sci Nutr ; 12(6): 3849-3862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873467

ABSTRACT

Oleogels, characterized by their semisolid matrix formed from liquid oil structured by gelators, are emerging as a pivotal innovation in food formulation, primarily due to their capacity to enhance the nutritional profile of products by incorporating healthier fats. This review explored the integration of oleogels into diverse food matrices, examining their impact on texture, mouthfeel, and overall sensory characteristics. Through an extensive analysis of current research, this paper illustrates the versatility of oleogels created with a variety of structuring agents across different food applications. It also addresses the challenges inherent in the use of oleogels, including the preservation of their stability and consistency through varying storage and processing conditions, navigating the regulatory landscape concerning oleogelator safety and acceptability, and confronting higher production costs. Overall, this comprehensive review highlights the potential of oleogels as a promising tool for achieving desirable textural and sensory attributes in food products while also identifying areas for future research and development.

11.
Fitoterapia ; 172: 105759, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013059

ABSTRACT

A pair of new enantiomeric indolopyridoquinazoline-type alkaloids, (+)-1,7S,8R- and (-)-1,7R,8S-trihydroxyrutaecarpine (3a and 3b), and a new limonoid-tyrosamine hybrid, austrosinin (8), along with six known alkaloids and limonoids, were isolated from the stems with leaves of Tetradium austrosinense. Their structures were elucidated on the basis of analysis of MS, NMR, ECD and time-dependent density functional theory-based electronic circular dichroism (TDDFT-ECD) calculations, as well as proposed biosynthetic pathway. An anti-inflammatory bioassay in vitro showed 8 had significant immunosuppressive effect against the production of pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Subject(s)
Alkaloids , Limonins , Rutaceae , Limonins/pharmacology , Limonins/chemistry , Molecular Structure , Alkaloids/pharmacology , Alkaloids/chemistry , Rutaceae/chemistry , Circular Dichroism
12.
Am J Sports Med ; 51(4): 1033-1046, 2023 03.
Article in English | MEDLINE | ID: mdl-36802853

ABSTRACT

BACKGROUND: Microfracture has the most extensive clinical application because of its advantages of a single operation, unified process, and low operation cost. Because research on the repair mechanism of microfractures in the treatment of cartilage defects is not in-depth, this study aimed to elucidate the mechanism. PURPOSE: To identify the characteristic cell subsets at different repair stages after microfracture, systematically analyze the repair process of the defect area after microfracture, and investigate the mechanism of fibrocartilage repair. STUDY DESIGN: Descriptive laboratory study. METHODS: Full-thickness articular cartilage defects and microfractures was established in the right knee of Bama miniature pigs. Single-cell transcriptional assays were used to identify the characteristics of cells isolated from healthy articular cartilage and regenerated tissues. RESULTS: Microfractures induced mature fibrous repair in the full-thickness cartilage defect six months after surgery, while early stages of repair occurred within six weeks. Based on single-cell sequencing results, eight subsets and specific marker genes were identified. Two processes may occur after microfracture: normal hyaline cartilage regeneration and abnormal fibrocartilage repair. Regulatory chondrocytes, proliferative chondrocytes and cartilage progenitor cells (CPCs) may play important roles in the normal regeneration process. During abnormal repair, CPCs and skeletal stem cells may have different functions, and macrophages and endothelial cells may play important regulatory roles in the formation of fibrochondrocytes. CONCLUSIONS: Using single-cell transcriptome sequencing, this study investigated the tissue regeneration process and identified key cell subsets after microfracture. CLINICAL RELEVANCE: These results provide future targets for optimizing the repair effect of microfracture.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Fractures, Stress , Animals , Swine , Fractures, Stress/surgery , Endothelial Cells , Cartilage, Articular/surgery , Hyaline Cartilage
13.
Fitoterapia ; 169: 105606, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37442484

ABSTRACT

Fraxinifolines A-F (1-6), six new B-seco limonoids, together with four known A,D-di-seco ones, were isolated from the twigs with leaves of Tetradium fraxinifolium. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR, single-crystal X-ray diffraction and biogenetic pathway. An anti-inflammatory bioassay in vitro showed limonoids 1-3 had significant immunosuppressive effect against the production of pro-inflammatory cytokines (IL-1ß and/or TNF-α) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Subject(s)
Limonins , Molecular Structure , Limonins/pharmacology , Limonins/chemistry , Anti-Inflammatory Agents/pharmacology , Cytokines , Tumor Necrosis Factor-alpha/metabolism
14.
Immun Inflamm Dis ; 11(11): e1069, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38018571

ABSTRACT

BACKGROUND: Ulcerative colitis (UC), a chronic inflammatory disease, is caused by abnormal immune system reactions resulting in inflammation and ulcers in the large intestine. Phillygenin (PHI) is a natural compound found in Forsythia suspensa (Thunb.) Vahl, which is known for its antipyretic, anti-inflammatory, antiobesity, and other biological activities. However, the therapeutic role and molecular mechanisms of PHI on UC are still insufficiently researched. METHODS: In this study, dextran sulfate sodium (DSS) and 2.5% 2,4,6-trinitro-Benzenesulfonic acid (TNBS)-induced acute UC were used to investigate the therapeutic effects of PHI. We evaluated the effects of PHI on disease activity index (DAI), body weight, mortality, intestinal mucosal barrier, cytokine secretion, and macrophage infiltration into colon tissue using various techniques such as flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), RT-qPCR, and Western blot analysis. RESULTS: Our findings revealed that PHI has therapeutic properties in UC treatment. PHI was able to maintain body weight, reduce DAI and mortality, restore the intestinal mucosal barrier, and inhibit cytokine secretion. Flow cytometry assay and immunofluorescence indicated that PHI reduces macrophage infiltration into colon tissue. Mechanistically, PHI may exert anti-inflammatory effects by downregulating the TLR4/MyD88/NF-κB pathway and inhibiting the activation of NLRP3 inflammasome. CONCLUSION: In conclusion, PHI possesses significant anti-inflammatory properties and is expected to be a potential drug for UC treatment. Our study delves into the underlying mechanisms of PHI therapy and highlights the potential for further research in developing PHI-based treatments for UC.


Subject(s)
Colitis, Ulcerative , Forsythia , NF-kappa B/metabolism , Colitis, Ulcerative/drug therapy , Inflammasomes/adverse effects , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Toll-Like Receptor 4/metabolism , Forsythia/metabolism , Signal Transduction , Anti-Inflammatory Agents/adverse effects , Cytokines/metabolism , Body Weight
15.
Cell Rep ; 37(8): 110039, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34818556

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high fatality. Poor prognosis of SFTS has been associated with dysregulated host immunity; however, the immune patterns associated with pathophysiology involving SFTS exacerbation remain unclear. Here, we show that the single-cell landscape of peripheral immune responses is reprogrammed in SFTS and characterized by monocyte shift to an intermediate type along with complement activation, perturbation of plasmablast composition, and highly exhausted T cells, all correlated with lethal consequences. We identify the overexpression of interferon (IFN)-stimulated genes across most immune cell types after SFTSV infection, which are simultaneously related to older age, high viremia, and a hyperinflammatory response. A retrospective clinical study reveals no efficiency of IFN-α in treating SFTS. These data collectively support the intermediate monocytes and IFN-I-inducible plasmablasts to be major targets for SFTS virus infection, and they indicate the pivotal role of the IFN-I response in exacerbating hyperinflammation and lethal SFTS.


Subject(s)
Immunity/immunology , Leukocytes, Mononuclear/immunology , Severe Fever with Thrombocytopenia Syndrome/immunology , Adult , Antiviral Agents , China/epidemiology , Cohort Studies , Complement Activation/immunology , Female , Humans , Immunity/physiology , Interferons/genetics , Male , Monocytes/immunology , Plasma Cells , Retrospective Studies , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Single-Cell Analysis/methods , T-Lymphocytes/immunology , Viremia
16.
J Food Prot ; 81(1): 68-78, 2018 01.
Article in English | MEDLINE | ID: mdl-29271686

ABSTRACT

Quercetin, a ubiquitous flavonoid, is known to have antibacterial effects. The purpose of this study was to investigate the effect of quercetin on cecal microbiota of Arbor Acre (AA) broiler chickens in vivo and the bacteriostatic effect and antibacterial mechanism of quercetin in vitro. In vivo, 480 AA broilers (1 day old) were randomly allotted to four treatments (negative control and 0.2, 0.4, or 0.6 g of quercetin per kg of diet) for 42 days. Cecal microbial population and distribution were measured at the end of the experiment. The cecal microflora in these broilers included Proteobacteria, Fimicutes, Bacteroidetes, and Deferribacteres. Compared with the negative control, quercetin significantly decreased the copies of Pseudomonas aeruginosa ( P < 0.05), Salmonella enterica serotype Typhimurium ( P < 0.01), Staphylococcus aureus ( P < 0.01), and Escherichia coli ( P < 0.01) but significantly increased the copies of Lactobacillus ( P < 0.01), Bifidobacterium ( P < 0.01), and total bacteria ( P < 0.01). In vitro, we investigated the bacteriostatic effect of quercetin on four kinds of bacteria ( E. coli, P. aeruginosa, S. enterica Typhimurium, and S. aureus) and the antibacterial mechanism of quercetin in E. coli and S. aureus. The bacteriostatic effect of quercetin was stronger on gram-positive bacteria than on gram-negative bacteria. Quercetin damaged the cell walls and membranes of E. coli (at 50 × MIC) and S. aureus (at 10 × MIC). Compared with the control, the activity of the extracellular alkaline phosphatase and ß-galactosidase and concentrations of soluble protein in E. coli and S. aureus were significantly increased (all P < 0.01), and the activity of ATP in S. aureus was significantly increased ( P < 0.01); however, no significant change in ATP activity in E. coli was observed ( P > 0.05). These results suggest that quercetin has potential as an alternative antibiotic feed additive in animal production.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Escherichia coli/drug effects , Quercetin/pharmacology , Salmonella typhimurium/growth & development , Staphylococcus aureus/drug effects , Animals , Bifidobacterium/growth & development , Cecum/microbiology , Diet/veterinary , Gram-Negative Bacteria/drug effects , Lactobacillus , Microbiota , Random Allocation
17.
Cell Rep ; 20(8): 1794-1804, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834744

ABSTRACT

DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases.


Subject(s)
DNA Repair , Mediator Complex/genetics , Microphthalmia-Associated Transcription Factor/genetics , Animals , Cell Line, Tumor , Humans , Mediator Complex/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Pigmentation/genetics , Zebrafish
18.
Cell Death Dis ; 8(10): e3149, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29072700

ABSTRACT

Aneuploidy including trisomy results in developmental disabilities and is the leading cause of miscarriages in humans. Unlike trisomy 21, pathogenic mechanisms of trisomy 18 remain unclear. Here, we successfully generated induced pluripotent stem cells (iPSCs) from human amniotic fluid cells (AFCs) with trisomy 18 pregnancies. We found that trisomy 18 iPSCs (18T-iPSCs) were prone to differentiate spontaneously. Intriguingly, 18T-iPSCs lost their extra 18 chromosomes and converted to diploid cells after 10 generations. fluorescence in situ hybridization analysis showed chromosome loss was a random event that might happen in any trisomic cells. Selection undifferentiated cells for passage accelerated the recovery of euploid cells. Overall, our findings indicate the genomic instability of trisomy 18 iPSCs bearing an extra chromosome 18.


Subject(s)
Chromosomes/genetics , In Situ Hybridization, Fluorescence/methods , Induced Pluripotent Stem Cells/pathology , Trisomy 18 Syndrome/genetics , Cell Differentiation , Chromosomes/metabolism , Humans , Trisomy 18 Syndrome/metabolism
19.
Nutrients ; 8(3): 167, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26999194

ABSTRACT

In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dietary Supplements , Immune System/drug effects , Inflammation/prevention & control , Quercetin/therapeutic use , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/pharmacokinetics , Biological Availability , Diet , Dietary Supplements/adverse effects , Humans , Immune System/immunology , Immune System/metabolism , Immune System/physiopathology , Inflammation/immunology , Inflammation/metabolism , Inflammation/physiopathology , Intestinal Absorption , Quercetin/administration & dosage , Quercetin/adverse effects , Quercetin/pharmacokinetics , Recommended Dietary Allowances , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL