Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144756

ABSTRACT

Adefovir (ADV) is an anti-retroviral drug, which can be used to treat acquired immune deficiency syndrome (AIDS) and chronic hepatitis B (CHB), so its quantitative analysis is of great significance. In this work, zirconium molybdate (ZrMo2O8) was synthesized by a wet chemical method, and a composite with multi-walled carbon nanotubes (MWCNTs) was made. ZrMo2O8-MWCNTs composite was dropped onto the surface of a glassy carbon electrode (GCE) to prepare ZrMo2O8-MWCNTs/GCE, and ZrMo2O8-MWCNTs/GCE was used in the electrochemical detection of ADV for the first time. The preparation method is fast and simple. The materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV). It was electrochemically analysed by differential pulse voltammetry (DPV). Compared with single-material modified electrodes, ZrMo2O8-MWCNTs/GCE showed a vastly improved electrochemical response to ADV. Moreover, the sensor complements the study of the electrochemical detection of ADV. Under optimal conditions, the proposed electrochemical method showed a wide linear range (from 1 to 100 µM) and a low detection limit (0.253 µM). It was successfully tested in serum and urine. In addition, the sensor has the advantages of a simple preparation, fast response, good reproducibility and repeatability. It may be helpful in the potential applications of other substances with similar structures.


Subject(s)
Nanocomposites , Nanotubes, Carbon , Adenine/analogs & derivatives , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Molybdenum , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Organophosphonates , Reproducibility of Results , Zirconium
2.
Molecules ; 26(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770975

ABSTRACT

Acyclovir (ACV) is an effective and selective antiviral drug, and the study of its toxicology and the use of appropriate detection techniques to control its toxicity at safe levels are extremely important for medicine efforts and human health. This review discusses the mechanism driving ACV's ability to inhibit viral coding, starting from its development and pharmacology. A comprehensive summary of the existing preparation methods and synthetic materials, such as 5-aminoimidazole-4-carboxamide, guanine and its derivatives, and other purine derivatives, is presented to elucidate the preparation of ACV in detail. In addition, it presents valuable analytical procedures for the toxicological studies of ACV, which are essential for human use and dosing. Analytical methods, including spectrophotometry, high performance liquid chromatography (HPLC), liquid chromatography/tandem mass spectrometry (LC-MS/MS), electrochemical sensors, molecularly imprinted polymers (MIPs), and flow injection-chemiluminescence (FI-CL) are also highlighted. A brief description of the characteristics of each of these methods is also presented. Finally, insight is provided for the development of ACV to drive further innovation of ACV in pharmaceutical applications. This review provides a comprehensive summary of the past life and future challenges of ACV.


Subject(s)
Acyclovir/adverse effects , Acyclovir/analysis , Antiviral Agents/adverse effects , Antiviral Agents/analysis , Acyclovir/chemical synthesis , Antiviral Agents/chemical synthesis , Humans , Molecular Structure
3.
Chin Herb Med ; 16(1): 27-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38375051

ABSTRACT

Traditional Chinese medicines (TCMs) possess a rich historical background, unique theoretical framework, remarkable therapeutic efficacy, and abundant resources. However, the modernization and internationalization of TCMs have faced significant obstacles due to their diverse ingredients and unknown mechanisms. To gain deeper insights into the phytochemicals and ensure the quality control of TCMs, there is an urgent need to enhance analytical techniques. Currently, two-dimensional (2D) chromatography, which incorporates two independent separation mechanisms, demonstrates superior separation capabilities compared to the traditional one-dimensional (1D) separation system when analyzing TCMs samples. Over the past decade, new techniques have been continuously developed to gain actionable insights from complex samples. This review presents the recent advancements in the application of multidimensional chromatography for the quality evaluation of TCMs, encompassing 2D-gas chromatography (GC), 2D-liquid chromatography (LC), as well as emerging three-dimensional (3D)-GC, 3D-LC, and their associated data-processing approaches. These studies highlight the promising potential of multidimensional chromatographic separation for future phytochemical analysis. Nevertheless, the increased separation capability has resulted in higher-order data sets and greater demands for data-processing tools. Considering that multidimensional chromatography is still a relatively nascent research field, further hardware enhancements and the implementation of chemometric methods are necessary to foster its robust development.

4.
Front Pharmacol ; 15: 1287321, 2024.
Article in English | MEDLINE | ID: mdl-38584600

ABSTRACT

Ethnopharmacological relevance: Pelvic inflammatory disease (PID) is a frequently occurring gynecological disorder mainly caused by the inflammation of a woman's upper genital tract. Generally, antibiotics are used for treating PID, but prolonged use poses potential risks of gut bacterial imbalance, bacterial resistance, super bacteria production, and associated adverse reactions. Traditional Chinese medicine (TCM) has shown unique advantages in various ailments and has received widespread clinical research attention. Fuke Qianjin (FUKE) capsule is an approved National Medical Products Administration (NMPA License No. Z20020024) Chinese herbal prescription that has been widely used individually or in combination with other Western medicines for the treatment of various gynecological inflammatory diseases, including chronic cervicitis, endometritis, and chronic PID. Aim: This clinical trial was designed to assess the safety and efficacy of FUKE capsule in mild-to-moderate symptomatic PID patients. Materials and methods: This phase 2, randomized, double-blind, positive controlled clinical trial was conducted in mild-to-moderate symptomatic PID patients at a single center in Pakistan from 21 September 2021 to 11 March 2022. Eligible female participants were randomly assigned to a test and a control group with a ratio of 1:1. The test group subjects received two metronidazole (METRO) tablets and one doxycycline hyclate (DOXY) simulant at a time, twice daily for 14 days, and two Fuke Qianjin (FUKE) capsules, three times a day after a meal for 28 days. Subjects in the control group received two METRO tablets and one DOXY tablet at a time, twice daily for 14 days, and two FUKE simulant capsules, three times a day after meal for 28 days. The primary efficacy outcome was an improvement in pelvic pain symptoms assessed through a visual analog scale (VAS). The secondary outcomes were the improvement in secondary efficacy symptoms like local physical signs, clinical assessment of leucorrhea and cervical secretions through laboratory examination, and improvement in the maximum area of pelvic effusion assessed through gynecological ultrasound after the treatment. The safety outcomes were assessed through vital signs, laboratory tests, electrocardiogram findings, and adverse events/serious adverse events. Results: A total of 198 subjects with active PID were randomly assigned to a test group (n = 99) and a control group (n = 99). The baseline characteristics of the subjects in the two groups were similar. In the intention-to-treat analysis, the primary efficacy was 84.9% for the test group and 71.6% for the control group, with a statistically significant difference (p = 0.0370; 95% CI -0.2568 to -0.0088). The secondary clinical efficacy was 88.4% for the test group and 82.7% for the control group, with no significant difference (p = 0.2977; 95% CI -0.1632 to 0.0501). The improvement in local physical signs was 95.8% for the test group and 76.9% for the control group, with no significant difference (p = 0.0542; 95% CI -0.3697 to -0.0085). The inter-group non-inferiority comparison showed that the upper limit of the 95% CI was less than 0.15 and thus met the non-inferiority requirements of the test group to the control group. The results of clinical signs of leucorrhea and cervical secretions showed that there was no difference in the rate of improvement between the test and control groups, indicating that FUKE was non-inferior to DOXY. A total of 14 adverse events in eight subjects were observed in the trial, with an incidence rate of 4.7%. Four subjects in each group experienced seven adverse events with 4.5% and 4.8% incidence rates of adverse reactions in the test and control groups, with no statistically significant differences (p = 0.2001). No serious adverse events occurred in the trial. Conclusion: The results of this trial indicate that the test drug (Fuke Qianjin capsule) is non-inferior to the control drug (doxycycline hyclate tablet) in treating mild-to-moderate PID patients with comparable efficacy, safety, and tolerability to the control drug. Clinical Trial Registration: www.clinicaltrials.gov, identifier NCT04723069.

5.
Biosensors (Basel) ; 12(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36551090

ABSTRACT

Tenofovir disoproxil fumarate (TDF) is an antiretroviral medication with significant curative effects, so its quantitative detection is important for human health. At present, there are few studies on the detection of TDF by electrochemical sensors. This work can be a supplement to the electrochemical detection of TDF. Moreover, bare electrodes are susceptible to pollution, and have high overvoltage and low sensitivity, so it is crucial to find a suitable electrode material. In this work, zirconium oxide (ZrO2) that has a certain selectivity to phosphoric acid groups was synthesized by a hydrothermal method with zirconyl chloride octahydrate as the precursor. A composite modified glassy carbon electrode for zirconium oxide-chitosan-multiwalled carbon nanotubes (ZrO2-CS-MWCNTs/GCE) was used for the first time to detect the TDF, and achieved rapid, sensitive detection of TDF with a detection limit of sub-micron content. The ZrO2-CS-MWCNTs composite was created using sonication of a mixture of ZrO2 and CS-MWCNTs solution. The composite was characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). Electrochemical analysis was performed using differential pulse voltammetry (DPV). Compared with single-material electrodes, the ZrO2-CS-MWCNTs/GCE significantly improves the electrochemical sensing of TDF due to the synergistic effect of the composite. Under optimal conditions, the proposed method has achieved good results in linear range (0.3~30 µM; 30~100 µM) and detection limit (0.0625 µM). Moreover, the sensor has the merits of simple preparation, good reproducibility and good repeatability. The ZrO2-CS-MWCNTs/GCE has been applied to the determination of TDF in serum and urine, and it may be helpful for potential applications of other substances with similar structures.


Subject(s)
Antiviral Agents , Nanotubes, Carbon , Humans , Tenofovir , Nanotubes, Carbon/chemistry , Reproducibility of Results , Electrochemical Techniques/methods , Electrodes , Limit of Detection
6.
Mol Med Rep ; 23(5)2021 05.
Article in English | MEDLINE | ID: mdl-33760157

ABSTRACT

Diabetic nephropathy (DN) is a severe microvascular complication of diabetes. Hyperglycemia­induced glomerular mesangial cells injury is associated with microvascular damage, which is an important step in the development of DN. Piperazine ferulate (PF) has been reported to exert protective effects against the progression of DN. However, whether PF prevents high glucose (HG)­induced mesangial cell injury remains unknown. The aim of the present study was to investigate the effects of PF on HG­induced mesangial cell injury and to elucidate the underlying mechanisms. Protein and mRNA expression levels were determined via western blot analysis and reverse transcription­quantitative PCR, respectively. IL­6 and TNF­α levels were measured using ELISA. Reactive oxygen species levels and NF­κB p65 nuclear translation were determined via immunofluorescence analysis. Apoptosis was assessed by measuring lactate dehydrogenase (LDH) release, as well as using MTT and flow cytometric assays. The mitochondrial membrane potential of mesangial cells was determined using the JC­1 kit. The results revealed that LDH release were increased; however, cell viability and mitochondrial membrane potential were decreased in the HG group compared with the control group. These changes were inhibited after the mesangial cells were treated with PF. Moreover, PF significantly inhibited the HG­induced production of inflammatory cytokines and the activation of NF­κB in mesangial cells. PF also attenuated the HG­induced upregulation of the expression levels of fibronectin and collagen 4A1. Furthermore, the overexpression of p66Src homology/collagen (Shc) abolished the protective effect of PF on HG­induced mesangial cell injury. In vivo experiments revealed that PF inhibited the activation of inflammatory signaling pathways, glomerular cell apoptosis and mesangial matrix expansion in diabetic mice. Collectively, the present findings demonstrated that PF attenuated HG­induced mesangial cells injury by inhibiting p66Shc.


Subject(s)
Acute Kidney Injury/drug therapy , Diabetic Nephropathies/drug therapy , Piperazine/pharmacology , Repressor Proteins/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Collagen Type IV/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Disease Models, Animal , Fibronectins/genetics , Gene Expression Regulation/drug effects , Glucose/toxicity , Humans , Hyperglycemia/complications , Hyperglycemia/drug therapy , Hyperglycemia/genetics , Hyperglycemia/pathology , Interleukin-6/genetics , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice , RNA, Messenger/genetics , Transcription Factor RelA/genetics , Tumor Necrosis Factor-alpha/genetics
7.
Exp Ther Med ; 22(4): 1175, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34504620

ABSTRACT

Filtration barrier injury induced by high glucose (HG) levels leads to the development of diabetic nephropathy. The endothelial glycocalyx plays a critical role in glomerular barrier function. In the present study, the effects of piperazine ferulate (PF) on HG-induced filtration barrier injury of glomerular endothelial cells (GEnCs) were investigated and the underlying mechanism was assessed. Immunofluorescence was used to observe the distribution of the glycocalyx as well as the expression levels of syndecan-1 and Zonula occludens-1 (ZO-1). Endothelial permeability assays were performed to assess the effects of PF on the integrity of the filtration barrier. Protein and mRNA expression levels were measured by western blotting and reverse transcription-quantitative PCR analyses, respectively. In vitro experiments revealed that adenosine monophosphate-activated protein kinase (AMPK) mediated HG-induced glycocalyx degradation and endothelial barrier injury. PF inhibited the HG-induced endothelial barrier injury and restored the expression levels of heparanase-1 (Hpa-1), ZO-1 and occludin-1 by AMPK. In vivo assays demonstrated that PF reduced the expression levels of Hpa-1, increased the expression levels of ZO-1 and attenuated glycocalyx degradation in the glomerulus. These data suggested that PF attenuated HG-induced filtration barrier injury of GEnC by regulating AMPK expression.

8.
Front Pharmacol ; 12: 797278, 2021.
Article in English | MEDLINE | ID: mdl-35280252

ABSTRACT

Background: Ticagrelor belongs to a new class of P2Y12 receptor inhibitor that has been widely used for antiplatelet therapy. This study aimed to explore the effect of single nucleotide polymorphisms (SNPs) in metabolic enzymes, transporters, and other relevant variants on the pharmacokinetics (PK) of ticagrelor and its active metabolite, AR-C124910XX. Methods: The study population comprised 68 healthy Chinese volunteers who were enrolled in a ticagrelor bioequivalence clinical trial. The PK profile of ticagrelor was evaluated after orally administering a single 90-mg dose of ticagrelor in tablet form. The plasma concentrations of ticagrelor and AR-C124910XX were determined through liquid chromatography-tandem mass spectrometry. Plasma DNA samples were used to explore the effect of gene polymorphisms on the PK of ticagrelor and AR-C124910XX with whole-exome sequencing. Results: Female participants had a higher maximum plasma concentration/weight ratio (C max/W; p < 0.001) and a shorter half-life (T 1/2; p < 0.05) for ticagrelor than their male counterparts. In addition, a higher area under the curve/weight ratio (AUC/W; p < 0.001), and longer T 1/2 (p < 0.001) and time to reach the maximum plasma concentration (T max; p < 0.001), as well as a lower apparent drug clearance (CL/F; p < 0.001), were observed among healthy volunteers in the fed trial compared to those enrolled in the fasting trial. For AR-C124910XX, higher C max/W (p < 0.001) and AUC/W (p < 0.001) but lower CL/F (p < 0.001) and apparent volume of distribution (V d/F; p < 0.001) were observed among female participants. Healthy volunteers enrolled in the fasting trial exhibited higher C max/W (p < 0.001) and AUC/W (p < 0.01), shorter T max (p < 0.001), and lower CL/F (p < 0.001) and V d/F (p < 0.001) than those enrolled in the fed trial. Upon confirmation through multivariate analysis, the CYP4F2 rs2074900 A/A carriers were associated with higher C max/W and AUC/W and lower CL/F and V d/F than the CYP4F2 rs2074900 A/G and G/G carriers. Conclusion: This study is the first to show that the CYP4F2 rs2074900 SNP had a remarkable effect on ticagrelor PK, which is significant since it adds to the limited pharmacogenetic information on ticagrelor.

9.
Mol Med Rep ; 19(3): 2245-2253, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30664213

ABSTRACT

Diabetic nephropathy (DN) is among the most common complications of diabetes mellitus. The disorder is associated with a decrease in the activity of the nitric oxide synthase/nitric oxide system. Piperazine ferulate (PF) is widely used for the treatment of kidney disease in China. The aim of the present study was to examine the effects of PF on streptozotocin (STZ)­induced DN and the underlying mechanism of this process. STZ­induced diabetic mice were intragastrically administered PF (100, 200 and 400 mg/kg/body weight/day) for 12 weeks. At the end of the treatment period, the parameters of 24­h albuminuria and blood urea nitrogen, creatinine and oxidative stress levels were measured. Hematoxylin and eosin staining, periodic acid­Schiff staining and electron microscopy were used to evaluate the histopathological alterations. mRNA and protein expression of endothelial nitric oxide synthase (eNOS) were measured by quantitative polymerase chain reaction and western blotting, respectively. PF significantly decreased blood urea nitrogen and creatinine levels and 24­h albuminuria, and it alleviated oxidative stress, improved glomerular basement membrane thickness and caused an upregulation in eNOS expression and activity levels in diabetic mice. In addition, high glucose decreased eNOS expression levels, whereas PF caused a reversal in the nitric oxide (NO) levels of glomerular endothelial cells. The present results suggested that PF exhibited renoprotective effects on DN. The mechanism of its action was associated with the regulation of eNOS expression and activity.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Nitric Oxide Synthase Type III/genetics , Piperazine/administration & dosage , Animals , Blood Glucose/genetics , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Disease Models, Animal , Gene Expression Regulation, Enzymologic/drug effects , Humans , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Mice , Nitric Oxide/genetics , Nitric Oxide/metabolism , Oxidative Stress/drug effects , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL