Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Tissue Res ; 381(1): 71-81, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32043210

ABSTRACT

Periodontal ligament (PDL) stem cell properties are critical in the periodontal tissue regeneration for periodontitis. Previously, we have demonstrated that cigarette smoking attenuates PDL-derived stem cell (PDLSC) regenerative properties. Here, we report the findings on the regenerative properties of human PDLSCs with different donor ages and the underlying mechanisms. Human PDLSCs from 18 independent donors were divided into different age groups (≤ 20, 20-40, and > 40 years old). The proliferation of PDLSCs with donor age of ≤ 20 years old was significantly higher than that of the 20-40- and > 40-years-old groups, whereas the migration of PDLSCs with donor age of ≤ 20 and 20-40 years old was significantly higher than that of the > 40-years-old group. Moreover, the mesodermal lineage differentiation capabilities of PDLSCs were also higher in the donor age group of ≤ 20 years old than the donor age of > 40 years old. In addition, shorter telomere length and lower expression of SSEA4 were found in PDLSCs with donor age of > 40 years old, compared with those with donor age of ≤ 20-years-old group. Besides, PDLSCs with donor age of 20-40 and > 40 years old had higher IL6 and CXCL8 gene expressions. In summary, results from this study revealed the attenuated proliferation, migration, and mesodermal lineage differentiation properties in human PDLSCs with older donor ages. Donor age of PDLSCs should be considered as the selection criteria for the periodontal tissue regeneration treatment.


Subject(s)
Age Factors , Chronic Periodontitis/therapy , Periodontal Ligament/cytology , Stage-Specific Embryonic Antigens/metabolism , Stem Cells/cytology , Telomere/ultrastructure , Adult , Cell Proliferation , Cells, Cultured , Female , Guided Tissue Regeneration, Periodontal , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Male , Osteogenesis , Young Adult
2.
Stem Cells ; 36(6): 844-855, 2018 06.
Article in English | MEDLINE | ID: mdl-29476565

ABSTRACT

Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of ßIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855.


Subject(s)
Axons/physiology , Gene Expression/genetics , Nerve Regeneration/genetics , Optic Nerve Injuries/genetics , Periodontal Ligament/physiology , Retinal Ganglion Cells/metabolism , Stem Cells/metabolism , Animals , Cell Survival , Disease Models, Animal , Humans , Male , Rats
3.
J Ethnopharmacol ; 328: 118082, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38522625

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Longdan zhike tablet (LDZK) is a Tibetan medicine formula commonly used in the highland region of Tibet, China, to ameliorate respiratory diseases, such as acute bronchitis and asthma. In Chinese traditional medicine, some herbal formulas with anti-inflammatory properties targeting the respiratory system are clinically adopted as supplementary therapies for chronic obstructive pulmonary disease (COPD). However, the specific anti-COPD effects of LDZK remain to be evaluated. AIM OF THE STUDY: The aim of this study is to identify the principal bioactive compounds in LDZK, and elucidate the effects and mechanisms of the LDZK on COPD. METHODS: High-resolution mass spectrometry was utilized for a comprehensive characterization of the chemical composition of LDZK. The therapeutic effects of LDZK were assessed on the LPS-papain-induced COPD mouse model, and LPS-induced activation model of A549 cells. The safety of LDZK was evaluated by orally administering a single dose of 30 g/kg to rats and monitoring physiological and biochemical indicators after a 14-day period. Network pharmacology and Western blot analysis were employed for mechanism prediction of LDZK. RESULTS: A comprehensive analysis identified a total of 45 compounds as the major constituents of LDZK. Oral administration of LDZK resulted in notable ameliorative effects in respiratory function, accompanied by reduced inflammatory cell counts and cytokine levels in the lungs of COPD mice. Acute toxicity tests demonstrated a favorable safety profile at a dose equivalent to 292 times the clinically prescribed dose. In vitro studies revealed that LDZK exhibited protective effects on A549 cells by mitigating LPS-induced cellular damage, reducing the release of NO, and downregulating the expression of iNOS, COX2, IL-1ß, IL-6, and TNF-α. Network pharmacology and Western blot analysis indicated that LDZK primarily modulated the MAPK signaling pathway and inhibited the phosphorylation of p38/ERK/JNK. CONCLUSIONS: LDZK exerts significant therapeutic effects on COPD through the regulation of the MAPK pathway, suggesting its potential as a promising adjunctive therapy for the treatment of chronic inflammation in COPD.


Subject(s)
Medicine, Tibetan Traditional , Pulmonary Disease, Chronic Obstructive , Rats , Mice , Animals , Lipopolysaccharides/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Lung , Signal Transduction
4.
Invest Ophthalmol Vis Sci ; 54(6): 3965-74, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23661377

ABSTRACT

PURPOSE: To investigate the retinal fate competence of human postnatal periodontal ligament (PDL)-derived stem cells (PDLSC) through a directed differentiation mimicking mammalian retinogenesis. METHODS: Human teeth were collected from healthy subjects younger than 35 years old. Primary PDLSC were isolated by collagenase digestion and cultivated. PDLSC at passage 3 were cultured in the induction media containing Noggin (antagonist of bone morphogenic protein) and Dkk-1 (antagonist of Wnt/ß-catenin signaling). Gene expression of neural crest cells, retinal progenitors, and retinal neurons, including photoreceptors, was revealed by RNA analyses, immunofluorescence, and flow cytometry. The neuronal-like property of differentiated cells in response to excitatory glutamate was examined by fluo-4-acetoxymethyl calcium imaging assay. RESULTS: Primary human PDLSC stably expressed marker genes for neural crest (Notch1, BMP2, Slug, Snail, nestin, and Tuj1), mesenchymal stem cell (CD44, CD90, and vimentin), and embryonic stem cell (c-Myc, Klf4, Nanog, and SSEA4). Under low attachment culture, PDLSC generated neurospheres expressing nestin, p75/NGFR, Pax6, and Tuj1 (markers of neural progenitors). When neurospheres were plated on Matrigel-coated surface, they exhibited rosette-like outgrowth. They expressed eye field transcription factors (Pax6, Rx, Lhx, Otx2). By flow cytometry, 94% of cells were Pax6(nuclear)Rx(+), indicative of retinal progenitors. At prolonged induction, they expressed photoreceptor markers (Nrl, rhodopsin and its kinase) and showed significant responsiveness to excitatory glutamate. CONCLUSIONS: Primary human PDLSC could be directed to retinal progenitors with competence for photoreceptor differentiation. Human neural crest-derived PDL is readily accessible and can be an ample autologous source of undifferentiated cells for retinal cell regeneration.


Subject(s)
Adult Stem Cells/cytology , Periodontal Ligament/cytology , Retina/cytology , Adolescent , Adult , Adult Stem Cells/metabolism , Biomarkers/metabolism , Blotting, Western , Carrier Proteins/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Eye Proteins/metabolism , Female , Flow Cytometry , Gene Expression , Humans , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/metabolism , Kruppel-Like Factor 4 , Male , Neurogenesis/physiology , Retina/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway/physiology , Young Adult , beta Catenin/antagonists & inhibitors , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL