Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Environ Manage ; 213: 109-118, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29482091

ABSTRACT

Here, we report a pyrolyzed guinea fowl manure-derived biochar (GFM-BC) and cattle manure-derived biochar (CTM-BC) and their use as adsorbent for the removal of divalent copper from aqueous media was evaluated. The BCs physical and chemical properties were characterized by Scanning electron microscopy (SEM), Elemental dispersive x-ray analysis (EDX), Fourier transform infrared microscopy (FTIR) and thermo gravimetric analysis (TGA). The results presented that the BCs obtained higher content were quite effective for Cu (II) removal with maximum capacities of 43.60 and 44.50 mg g-1 for GFM-BC and CTM-BC, respectively. From simulation of experimental data with different adsorption isotherms and kinetics models it was found that the adsorption of both BCs was adequately fitted by Freundlich adsorption model and pseudo-second order kinetic model, respectively. Thermodynamic parameters suggested that the adsorption of Cu (II) onto both BCs was feasible, spontaneous and exothermic under evaluated parameters. Thus, the biomass used in this study proved to be effective adsorbents for the removal of Cu (II) from aqueous media.


Subject(s)
Charcoal , Copper/isolation & purification , Manure , Adsorption , Animals , Cattle , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical
2.
Environ Technol ; 40(8): 1071-1078, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29385891

ABSTRACT

Nanotechnology exhibits a multidisciplinary area and gained interests for researchers. Nanoparticles produced via physical and chemical methods affects ecosystem drastically. Green synthesis is the charming technique that is inexpensive and safe for the environment. This study aimed to explore the antibacterial actions of as-synthesized silver nanoparticles (Ag-NPs) against Escherichia coli, Staphylococcus aureus and Streptococcus faecalis. Also, the anti-corrosion actions confirmed that the Ag-NPs proved as good inhibitors. In this way, Ag-NPs were prepared via biosynthesis technique by consuming the ground leaves and stem of 'Sida acuta' as a capping agent. The Ag-NPs were formed by irradiation of the aqueous solution of silver nitrate (AgNO3) with extract of S. acuta stem and leaves. The as-synthesized reaction mixture of Ag-NPs was found to exhibit an absorbance band at 446-447 nm, by an UV/VIS spectrophotometer, which is a characteristic of Ag-NPs due to the surface plasmon resonance absorption band. The X-ray diffraction and transmission electron microscopy (TEM) were used for the confirmation of Ag-NPs' variety dimension, morphology and dispersion. The infrared spectra confirmed the bio-fabrication of the Ag-NPs displayed the existence of conceivable functional groups responsible for the bio-reduction and capping. The antimicrobial actions were measured and the zone of inhibition was compared with standard antibiotics.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents , Corrosion , Ecosystem , Microbial Sensitivity Tests , Plant Extracts , Silver , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL