Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Main subject
Affiliation country
Publication year range
1.
Se Pu ; 41(6): 472-481, 2023 Jun 08.
Article in Zh | MEDLINE | ID: mdl-37259871

ABSTRACT

Perfluorinated compounds (PFCs) are widely used in textiles, fire protection, metal electroplating, and semiconductor production owing to their hydrophobic and oil-repellent characteristics. However, they are also persistent organic pollutants. The uncontrolled discharge of PFCs into the environment has led to serious global pollution. PFCs pose severe reproductive, neural, immune, and other threats to human health by accumulating through the food chain. Thus, the development and application of high-performance extraction materials has become a research hotspot in efforts to achieve the accurate detection of trace PFCs in environmental waters. Most traditional PFC adsorbents present a number of disadvantages, such as low adsorption selectivity, slow diffusion, and poor reusability. Covalent organic frameworks (COFs) are crystalline polymers with ordered porous structures, large specific surface areas, and high chemical and thermal stability. These frameworks can easily be functionalized for the desired purpose. In this paper, spherical amino-functionalized COFs (denoted COF-NH2) were fabricated via a two-step method to effectively enrich/remove PFCs from water. First, vinyl covalent organic framework (Vinyl COF) was synthesized at room temperature using 1,4-diradical-2,5-divinylbenzene (Dva) and 1,3,5-tris(4-aminophenyl)benzene (Tab) as building blocks. Then, thioether-bridged aromatic amine-functionalized spherical COF-NH2 was synthesized through a thiol-alkenyl click reaction using 4-aminothiophenol as the functional monomer. COF-NH2 showed good dispersion in water owing to its abundant amino groups, forming multiple hydrogen bonds with the F atoms of PFCs. The synergistic hydrophobic interactions between the organic skeleton of the COF and alkyl carbon chains of the PFCs led to enhanced adsorption efficiency. The produced Vinyl COF and COF-NH2 were characterized by Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and Brunner-Emmet-Teller (BET) measurements. The results confirmed that spherical COF-NH2 materials with a homogeneous size distribution were successfully fabricated. The obtained COF-NH2 microspheres had a diameter of approximately 500 nm and exhibited high thermal stability as well as a large specific surface area and pore volume. The adsorption kinetics, isotherm adsorption models, pH effects, and regeneration properties of COF-NH2 were also investigated, and the results indicated that the adsorption of PFCs by COF-NH2 conformed to the pseudo-second-order kinetic and Langmuir isotherm adsorption models. The obtained COF-NH2 microspheres can be applied over a wide pH range, and the best adsorption effect was achieved in neutral and alkaline environments. After five cycles of regeneration and reuse, the COF-NH2 microspheres retained their good adsorption efficiency for PFCs. The adsorption mechanism was mainly attributed to the synergistic effect of hydrogen bonding and hydrophobic interactions between COF-NH2 and the PFCs. The extraction efficiencies of the microspheres toward five PFCs (perfluorobutyric acid, perfluorovaleric acid, perfluorohexanoic acid, perfluorooctanoic acid, and perfluorononanoic acid) in tap and Pearl River water samples were between 91.76% and 98.59%, with relative standard deviations (RSDs) (n=3) varying from 0.82% to 3.8%; these findings indicate that the obtained COF-NH2 is promising for the extraction of PFCs from complex water samples. Given their uniform size distribution, high thermal stability, good adsorption performance, and reusability, the novel spherical COF-NH2 materials developed in this study may be used as solid-phase extraction materials or filled into liquid chromatographic columns for the enrichment, separation, and detection of PFCs in complex samples.

2.
Sci Total Environ ; 858(Pt 2): 159796, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36374730

ABSTRACT

In consideration of the severe hazards of radioactive uranium pollution, the rapid assessment of uranium in field and in vivo are urgently needed. In this work a novel biocompatible and sensitive visual fluorescent sensor based on aggregation-induced emission (AIE) was designed for onsite detection of UO22+ in complex environmental samples, including wastewater from Uranium Plant, river water and living cell. The AIE-active sensor (named as TPA-SP) was prepared with a "bottom-up" strategy by introducing a trianiline group (TPA) with a single-bond rotatable helix structure into the salicylaldehyde Schiff-base molecule. The photophysical properties, cytotoxicity test, recognition mechanism and the analytical performance for the detection of UO22+ in actual water samples and cell imaging were systematically investigated. TPA-SP exhibited high sensitivity and selectivity toward UO22+ as well as outstanding anti-interference ability against large equivalent of different ions in a wide effective pH range. A good linear relationship in the UO22+ concentration range of 0.05-1 µM was obtained with a low limit of detection (LOD) of 39.4 nM (9.38 ppb) for uranium detection. The prepared visual sensor showed great potential for fast risk assessment of uranium pollution in environmental systems. In addition, our results also indicated that the TPA-SP exhibited very low cytotoxicity in cells and demonstrated great potential for uranium detection in vivo.


Subject(s)
Uranium , Uranium/analysis , Water/chemistry , Limit of Detection , Ions/chemistry , Schiff Bases
3.
J Hazard Mater ; 448: 130864, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36736214

ABSTRACT

In consideration of the severe hazards of radioactive uranium pollution and the growing demand of uranium resources, the novel sensor/adsorbent composite was creatively developed to integrate the dual functions for on-site detection of uranium contamination and efficient recovery of uranium resources. By hybridizing the luminescent 3D terbium (III) metal-organic framework (Tb-MOF) with sodium alginate (SA) gel using terbium (III) as cross-linker, the Tb-MOF/Tb-AG was fabricated with multi-luminescence centers and sufficient binding sites for uranium. Notably, the ultra-high sensitivity with detection limit as low as 1.2 ppt was achieved, which was 4 orders of magnitude lower than the uranium contamination standard in drinking water (USEPA) and even comparable to the sensitivity of the ICP-MS. Furthermore, the very wide quantification range (1.0 ×10-9-5.0 ×10-4 mol/L), remarkable adsorption capacity (549.0 mg/g) and outstanding anti-interference ability have been achieved without sophisticated sample preparation procedures. Applied in complex natural water samples from Uranium Tailings and the Pearl River, this method has shown good detection accuracy. The ultra high sensitivity and great adsorption capacity for uranium could be ascribed to the synergistic coordination, hydrogen bonding and ion exchange between uranium and Tb-MOF/Tb-AG. The mechanisms were explored by infrared spectroscopy, batch experiments, X-ray photoelectron studies and energy dispersive spectroscopic studies. In addition, the Tb-MOF/Tb-AG can be reused for uranium adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL