Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Phys Rev Lett ; 132(4): 044001, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335365

ABSTRACT

Spatiotemporal vortex pulses are wave packets that carry transverse orbital angular momentum, exhibiting exotic structured wave fronts that can twist through space and time. Existing methods to generate these pulses require complex setups like spatial light modulators or computer-optimized structures. Here, we demonstrate a new approach to generate spatiotemporal vortex pulses using just a simple diffractive grating. The key is constructing a phase vortex in frequency-momentum space by leveraging symmetry, resonance, and diffraction. Our approach is applicable to any wave system. We use a liquid surface wave (gravity wave) platform to directly demonstrate and observe the real-time generation and evolution of spatiotemporal vortex pulses. This straightforward technique provides opportunities to explore pulse dynamics and potential applications across different disciplines.

2.
J Cell Biochem ; 121(7): 3502-3515, 2020 07.
Article in English | MEDLINE | ID: mdl-32277520

ABSTRACT

Long noncoding RNAs (lncRNAs) serve as competitive endogenous RNAs (ceRNAs) that play significant regulatory roles in the pathogenesis of tumors. However, the role of lncRNAs, especially the lncRNA-related ceRNA regulatory network, in glioblastoma (GBM) has not been fully elucidated. The goal of the current study was to construct lncRNA-microRNA-mRNA-related ceRNA networks for further investigation of their mechanism of action in GBM. We downloaded data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases and identified differential lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) associated with GBM. A ceRNA network was constructed and analyzed to examine the relationship between lncRNAs and patients' overall survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) were used to analyze the related mRNAs to indirectly explain the mechanism of action of lncRNAs. The potential effective drugs for the treatment of GBM were identified using the connectivity map (CMap). After integrated analysis, we obtained a total of 210 differentially expressed lncRNAs, 90 differentially expressed miRNAs, and 2508 differentially expressed mRNAs (DEmRNAs) from the TCGA and GEO databases. Using these differential genes, we constructed a lncRNA-associated ceRNA network. Six lncRNAs in the ceRNA network were associated with the overall survival of patients with GBM. Through KEGG analysis, it was found that the DEmRNAs involved in the network are related to cancer-associated pathways, for instance, mitogen-activated protein kinase and Ras signaling pathways. CMap analysis revealed four small-molecule compounds that could be used as drugs for the treatment of GBM. In this study, a multi-database joint analysis was used to construct a lncRNA-related ceRNA network to help identify the regulatory functions of lncRNAs in the pathogenesis of GBM.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Cell Line, Tumor , Cell Survival , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Gene Regulatory Networks , Glioblastoma/diagnosis , Humans , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , Prognosis , Protein Interaction Mapping
3.
Cancer Sci ; 110(4): 1389-1400, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30776175

ABSTRACT

The correlation of genetic alterations with response to neoadjuvant chemotherapy (NAC) has not been fully revealed. In this study, we enrolled 247 breast cancer patients receiving anthracycline-taxane-based NAC treatment. A next generation sequencing (NGS) panel containing 36 hotspot breast cancer-related genes was used in this study. Two different standards for the extent of pathologic complete response (pCR), ypT0/isypN0 and ypT0/is, were used as indicators for NAC treatment. TP53 mutation (n = 149, 60.3%), PIK3CA mutation (n = 109, 44.1%) and MYC amplification (n = 95, 38.5%) were frequently detected in enrolled cases. TP53 mutation (P = 0.019 for ypT0/isypN0 and P = 0.003 for ypT0/is) and ERBB2 amplification (P < 0.001 for both ypT0/isypN0 and ypT0/is) were related to higher pCR rates. PIK3CA mutation (P = 0.040 for ypT0/isypN0) and CCND2 amplification (P = 0.042 for ypT0/is) showed reduced sensitivity to NAC. Patients with MAPK pathway alteration had low pCR rates (P = 0.043 for ypT0/is). Patients with TP53 mutation (-) PIK3CA mutation (-) ERBB2 amplification (+) CCND1 amplification (-), TP53 mutation (+) PIK3CA mutation (-) ERBB2 amplification (+) CCND1 amplification (-) or TP53 mutation (+) PIK3CA mutation (+) ERBB2 amplification (+) CCND1 amplification (-)had significantly higher pCR rates (P < 0.05 for ypT0/isypN0 and ypT0/is) than wild type genotype tumors. Some cancer genetic alterations as well as pathway alterations were associated with chemosensitivity to NAC treatment. Our study may shed light on the molecular characteristics of breast cancer for prediction of NAC expectations when breast cancer is first diagnosed by biopsy.


Subject(s)
Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Cyclin D1/genetics , Drug Resistance, Neoplasm/genetics , Genetic Variation , Receptor, ErbB-2/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/metabolism , Cyclin D1/metabolism , Female , Gene Amplification , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation , Neoadjuvant Therapy , Receptor, ErbB-2/metabolism , Signal Transduction , Treatment Outcome , Tumor Burden
4.
Oncologist ; 24(2): 157-e64, 2019 02.
Article in English | MEDLINE | ID: mdl-30158288

ABSTRACT

LESSONS LEARNED: The findings of this prospective, single-arm, phase II study showed that neoadjuvant erlotinib was well tolerated and might improve the radical resection rate in patients with stage IIIA-N2 epidermal growth factor receptor mutation-positive non-small cell lung cancer (NSCLC).Erlotinib shows promise as a neoadjuvant therapy option in this patient population.Next-generation sequencing may be useful for predicting outcomes with preoperative tyrosine kinase inhibitors (TKIs) in patients with NSCLC.Large-scale randomized controlled trials investigating the role of TKIs in perioperative therapy, combining neoadjuvant and adjuvant treatments to enhance personalized therapy for patients in this precision medicine era, are warranted. BACKGROUND: Information on epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) as neoadjuvant therapy in non-small cell lung cancer (NSCLC) is scarce. We evaluated whether neoadjuvant erlotinib improves operability and survival in patients with stage IIIA-N2 EGFR mutation-positive NSCLC. METHODS: We conducted a prospective, single-arm, phase II study. Patients received erlotinib 150 mg per day for 56 days in the neoadjuvant period. The primary endpoint was the radical resection rate. RESULTS: Nineteen patients were included in the final analysis. After erlotinib treatment, 14 patients underwent surgery. The radical resection rate was 68.4% (13/19) with a 21.1% (4/19) rate of pathological downstaging. The objective response rate was 42.1%; 89.5% (17/19) of patients achieved disease control, with a 10.3-month median disease-free survival among patients who underwent surgery. Among all 19 patients who received neoadjuvant therapy, median progression-free survival (PFS) and overall survival were 11.2 and 51.6 months, respectively. Adverse events (AEs) occurred in 36.8% (7/19) of patients, with the most common AE being rash (26.3%); 15.8% experienced grade 3/4 AEs. Quality of life (QoL) improvements were observed after treatment with erlotinib for almost all QoL assessments. Effects of TP53 mutation on prognosis were evaluated in eight patients with adequate tissue samples. Next-generation sequencing revealed that most patients had a TP53 gene mutation (7/8) in addition to an EGFR mutation. No TP53 mutation, or very low abundance, was associated with longer PFS (36 and 38 months, respectively), whereas high abundance was associated with short PFS (8 months). CONCLUSION: Neoadjuvant erlotinib was well tolerated and may improve the radical resection rate in this patient population. Next-generation sequencing may predict outcomes with preoperative TKIs.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Erlotinib Hydrochloride/therapeutic use , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Erlotinib Hydrochloride/pharmacology , Female , Humans , Lung Neoplasms/pathology , Male , Mutation , Neoadjuvant Therapy , Neoplasm Staging , Prospective Studies
5.
Histopathology ; 75(6): 890-899, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31230400

ABSTRACT

AIMS: To characterise the mutational profiles of poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) and to identify markers with potential diagnostic, prognostic and therapeutic significance. METHODS AND RESULTS: Targeted next-generation sequencing with a panel of 18 thyroid carcinoma-related genes was performed on tissue samples from 41 PDTC and 25 ATC patients. Genetic alterations and their correlations with clinicopathological factors, including survival outcomes, were also analysed. Our results showed that ATC had significantly higher mutation rates of BRAF, TP53, TERT and PIK3CA than PDTC (P = 0.005, P = 0.007, P = 0.005, and P = 0.033, respectively). Nine (69%) ATC cases with papillary thyroid carcinoma (PTC) components harboured BRAF mutations, all of which coexisted with a late mutation event (TP53, TERT, or PIK3CA). Nine cases with oncogenic fusion (six RET cases, one NTRK1 case, one ALK case, and one PPARG case) were identified in 41 PDTCs, whereas only one case with oncogenic fusion (NTRK1) was found among 25 ATCs. Moreover, all six cases of RET fusion were found in PDTC with PTC components, accounting for 33%. In PDTC/ATC patients, concurrent TERT and PIK3CA mutations were associated with poor overall survival after adjustment for TNM stage (P = 0.001). CONCLUSIONS: ATC with PTC components is typically characterised by a BRAF mutation with a late mutation event, whereas PDTC with PTC components is more closely correlated with RET fusion. TERT and concurrent PIK3CA mutations predict worse overall survival in PDTC/ATC patients.


Subject(s)
Biomarkers, Tumor/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Telomerase/genetics , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Adult , Aged , Cell Differentiation , China , Cohort Studies , DNA Mutational Analysis , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Prognosis , Thyroid Carcinoma, Anaplastic/diagnosis , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology
6.
BMC Cancer ; 19(1): 441, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31088402

ABSTRACT

BACKGROUND: Glioblastoma is a disease with high heterogeneity that has long been difficult for doctors to identify and treat. ARHI is a remarkable tumor suppressor gene in human ovarian cancer and many other cancers. We found over-expression of ARHI can also inhibit cancer cell proliferation, decrease tumorigenicity, and induce autophagic cell death in human glioma and inhibition of the late stage of autophagy can further enhance the antitumor effect of ARHI through inducing apoptosis in vitro or vivo. METHODS: Using MTT assay to detect cell viability. The colony formation assay was used to measure single cell clonogenicity. Autophagy associated morphological changes were tested by transmission electron microscopy. Flow cytometry and TUNEL staining were used to measure the apoptosis rate. Autophagy inhibitor chloroquine (CQ) was used to study the effects of inhibition at late stage of autophagy on ARHI-induced autophagy and apoptosis. Protein expression were detected by Western blot, immunofluorescence and immunohistochemical analyses. LN229-derived xenografts were established to observe the effect of ARHI in vivo. RESULTS: ARHI induced autophagic death in glioma cells, and blocking late-stage autophagy markedly enhanced the antiproliferative activites of ARHI. In our research, we observed the inhibition of RAS-AKT-mTOR signaling in ARHI-glioma cells and blockade of autophagy flux at late stage by CQ enhanced the cytotoxicity of ARHI, caused accumulation of autophagic vacuoles and robust apoptosis. As a result, the inhibition of RAS augmented autophagy of glioma cells. CONCLUSION: ARHI may also be a functional tumor suppressor in glioma. And chloroquine (CQ) used as an auxiliary medicine in glioma chemotherapy can enhance the antitumor effect of ARHI, and this study provides a novel mechanistic basis and strategy for glioma therapy.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , ras Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Autophagy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Chloroquine/pharmacology , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , ras Proteins/genetics , rho GTP-Binding Proteins/genetics
7.
Cell Physiol Biochem ; 44(4): 1381-1395, 2017.
Article in English | MEDLINE | ID: mdl-29186708

ABSTRACT

BACKGROUND/AIMS: Glioma is the most devastating cancer in the brain and has a poor prognosis in adults. Therefore, there is a critical need for novel therapeutic strategies for the management of glioma patients. Isogambogenic acid, an active compound extracted from the Chinese herb Garcinia hanburyi, induces autophagic cell death. METHODS: Cell viability was detected with MTT assays. Cell proliferation was assessed using the colony formation assay. Morphological changes associated with autophagy and apoptosis were tested by TEM and Hoechst staining, respectively. The apoptosis rate was measured by flow cytometry. Western blot, immunofluorescence and immunohistochemical analyses were used to detect protein expression. U87-derived xenografts were established for the examination of the effect of isogambogenic acid on glioma growth in vivo. RESULTS: Isogambogenic acid induced autophagic death in U87 and U251 cells, and blocking late-stage autophagy markedly enhanced the antiproliferative activities of isogambogenic acid. Moreover, we observed the activation of AMPK-mTOR signalling in isogambogenic acid-treated glioma cells. Furthermore, the activation of AMPK or the inhibition of mTOR augmented isogambogenic acid-induced autophagy. Inhibition of autophagy attenuated apoptosis in isogambogenic acid-treated glioma cells. Finally, isogambogenic acid inhibited the growth of U87 glioma in vivo. CONCLUSION: Isogambogenic acid inhibits the growth of glioma via activation of the AMPK-mTOR signalling pathway, which may provide evidence for future clinical applications in glioma therapy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/toxicity , Cell Proliferation/drug effects , TOR Serine-Threonine Kinases/metabolism , Xanthones/toxicity , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Autophagy/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Glioma/drug therapy , Glioma/pathology , Humans , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , Transplantation, Heterologous , Xanthones/chemistry , Xanthones/therapeutic use
8.
Acta Pharmacol Sin ; 37(11): 1490-1498, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27665847

ABSTRACT

AIM: Although targeted therapy is very efficient for lung cancer, traditional platinum-based chemotherapies are still the principal strategy in the absence of positive biomarkers. The aim of the present study is to evaluate the contribution of RAD18 polymorphisms to platinum-chemotherapy response and its potential side effects in Chinese patients with non-small cell lung cancer (NSCLC). METHODS: A total of 1021 Chinese patients with histological diagnosis of advanced NSCLC were enrolled. Treatment responses were classified into 4 categories (complete response, partial response, stable disease and progressive disease). Gastrointestinal and hematological toxicity incidences were assessed twice a week during the first-line treatment. Ten RAD18 SNPs were genotyped. A logistic regression model was utilized to analyze the associations between RAD18 SNPs and treatment response or toxicity. RESULTS: Among the 10 SNPs tested, none was significantly correlated with the treatment response in a combined cohort. For gastrointestinal toxicity incidences, rs586014 was significantly associated with an increased risk of grade 3 or 4 gastrointestinal toxicity in non-smokers and in the combined cohort; rs654448 and rs618784 were significantly associated with gastrointestinal toxicity in non-smokers; rs6763823 was significantly associated with gastrointestinal toxicity in smokers. For hematological toxicity incidences, rs586014, rs654448 and rs618784 were significantly associated with hematologic toxicity in non-smokers; rs6763823 and rs9880051 were significantly associated with leukocytopenia in smokers. CONCLUSION: RAD18 polymorphisms are correlated with the side effects of platinum-chemotherapy in Chinese patients with advanced NSCLC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/adverse effects , DNA-Binding Proteins/genetics , Lung Neoplasms/drug therapy , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Asian People , Carcinoma, Non-Small-Cell Lung/genetics , DNA Damage/drug effects , Female , Gastrointestinal Tract/drug effects , Genetic Association Studies , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
9.
BMC Neurosci ; 15: 31, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24555847

ABSTRACT

BACKGROUND: DNA methylation has been viewed as the most highly characterized epigenetic mark for genome regulation and development. Postnatal brains appear to exhibit stimulus-induced methylation changes because of factors such as environment, lifestyle, and diet (nutrition). The purpose of this study was to examine how extensively the brain DNA methylome is regulated by nutrition in early life. RESULTS: By quantifying the total amount of 5-methylcytosine (5mC) in the thalamus and the hippocampus of postnatal malnourished mice and normal mice, we found the two regions showed differences in global DNA methylation status. The methylation level in the thalamus was much higher than that in the hippocampus. Then, we used a next-generation sequencing (NGS)-based method (MSCC) to detect the whole genome methylation of the two regions in malnourished mice and normal mice. Notably, we found that in the thalamus, 500 discriminable variations existed and that approximately 60% were related to neuronal development or psychiatric diseases. Pathway analyses of the corresponding genes highlighted changes for 9 genes related to long-term potentiation (5.3-fold enrichment, P = 0.033). CONCLUSIONS: Our findings may help to indicate the genome-wide DNA methylation status of different brain regions and the effects of malnutrition on brain DNA methylation. The results also indicate that postnatal malnutrition may increase the risk of psychiatric disorders.


Subject(s)
DNA Methylation/genetics , DNA/genetics , Hippocampus/physiopathology , Long-Term Potentiation , Malnutrition/physiopathology , Thalamus/physiopathology , Animals , Epigenesis, Genetic/genetics , Male , Mice
10.
Opt Express ; 22(23): 28500-5, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25402092

ABSTRACT

Femtosecond pulse laser with tilted intensity front demonstrates the capability of rotating the writing of nanograting in glass in 3D space. Other than the light polarization, this phenomenon is also associated with the quill-writing effect, which depends on the correlation between the sample movement and the pulse front tilt. This is because a pondermotive force, perpendicular to the tilted intensity plane, can push the excited electron plasma forward towards the pulse front. This behavior further tilts the electrical field plane and eventually result in a forced rotation of nanograting in 3D space.


Subject(s)
Glass/chemistry , Lasers , Nanotechnology/methods , Rotation , Microscopy, Electron, Scanning , Time Factors
11.
Front Bioeng Biotechnol ; 12: 1361682, 2024.
Article in English | MEDLINE | ID: mdl-38562665

ABSTRACT

Introduction: Glioblastoma (GBM) is a primary brain malignancy with a dismal prognosis and remains incurable at present. In this study, macrophages (MΦ) were developed to carry nanoparticle albumin-bound paclitaxel (nab-PTX) to form nab-PTX/MΦ. The aim of this study is to use a GBM-on-a-chip to evaluate the anti-GBM effects of nab-PTX/MΦ. Methods: In this study, we constructed nab-PTX/MΦ by incubating live MΦ with nab-PTX. We developed a microfluidic chip to co-culture GBM cells and human umbilical vein endothelial cells, mimicking the simplified blood-brain barrier and GBM. Using a syringe pump, we perform sustainable perfusion of nutrient media. To evaluate the anti-GBM effects nab-PTX/MΦ, we treated the GBM-on-a-chip model with nab-PTX/MΦ and investigated GBM cell proliferation, migration, and spheroid formation. Results: At the chosen concentration, nab-PTX did not significantly affect the viability, chemotaxis and migration of MΦ. The uptake of nab-PTX by MΦ occurred within 1 h of incubation and almost reached saturation at 6 h. Additionally, nab-PTX/MΦ exhibited the M1 phenotype, which inhibits tumor progression. Following phagocytosis, MΦ were able to release nab-PTX, and the release of nab-PTX by MΦ had nearly reached its limit at 48 h. Compared with control group and blank MΦ group, individual nab-PTX group and nab-PTX/MΦ group could inhibit tumor proliferation, invasion and spheroid formation. Meanwhile, the anti-GBM effect of nab-PTX/MΦ was more significant than nab-PTX. Discussion: Our findings demonstrate that nab-PTX/MΦ has a significant anti-GBM effect compared to individual nab-PTX or MΦ administration, suggesting MΦ as potential drug delivery vectors for GBM therapy. Furthermore, the developed GBM-on-a-chip model provides a potential ex vivo platform for innovative cell-based therapies and tailored therapeutic strategies for GBM.

12.
BMJ Open Respir Res ; 11(1)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38479817

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) and hyperuricaemia are both characterised by systemic inflammation. Preventing chronic diseases among the population with common metabolic abnormality is an effective strategy. However, the association of hyperuricaemia with the higher incidence and risk of COPD remains controversial. Therefore, replicated researches in populations with distinct characteristics or demographics are compellingly warranted. METHODS: This cohort study adopted a design of ambispective hospital-based cohort. We used propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) to minimise the effects of potential confounding factors. A Cox regression model and restricted cubic spline (RCS) model were applied further to assess the effect of serum urate on the risk of developing COPD. Finally, we conducted a two-sample Mendelian randomisation (MR) analysis to explore evidence of causal association. RESULTS: There is a higher incidence in the population with hyperuricaemia compared with the population with normal serum urate (22.29/1000 person-years vs 8.89/1000 person-years, p=0.009). This result is robust after performing PSM (p=0.013) and IPTW (p<0.001). The Cox model confirms that hyperuricaemia is associated with higher risk of developing COPD (adjusted HR=3.35 and 95% CI=1.61 to 6.96). Moreover, RCS shows that the risk of developing COPD rapidly increases with the concentration of serum urate when it is higher than the reference (420 µmol/L). Finally, in MR analysis, the inverse variance weighted method evidences that a significant causal effect of serum urate on COPD (OR=1.153, 95% CI=1.034 to 1.289) is likely to be true. The finding of MR is robust in the repeated analysis using different methods and sensitivity analysis. CONCLUSIONS: Our study provides convincing evidence suggesting a robust positive association between serum urate and the risk of developing COPD, and indicates that the population with hyperuricaemia is at high risk of COPD in the Chinese population who seek medical advice or treatment in the hospital.


Subject(s)
Hyperuricemia , Pulmonary Disease, Chronic Obstructive , Humans , Cohort Studies , Uric Acid , Hyperuricemia/epidemiology , Hyperuricemia/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Hospitals
13.
Opt Express ; 21(15): 18461-8, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23938718

ABSTRACT

In this paper, self-organized microgratings are fabricated in SrTiO(3) crystal just by scanning the focus of a tightly-focused linearly-polarized femtosecond laser beam to form a single line. The polarization direction of the laser beam is rotated by a λ/2 waveplate to check the effect of the polarization azimuth on the micrograting morphology. Fourier analyzing of the microscopic images of the microgratings indicates that the polarization plane azimuth of the laser beam does have influence on the microgratings in the aspects of groove orientation and groove spacing. A possible mechanism of polarization dependence is also proposed.


Subject(s)
Lasers , Models, Theoretical , Oxides/chemistry , Oxides/radiation effects , Refractometry/instrumentation , Refractometry/methods , Strontium/chemistry , Strontium/radiation effects , Titanium/chemistry , Titanium/radiation effects , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
14.
Chin Med ; 18(1): 81, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37403077

ABSTRACT

BACKGROUND: High mobility group box 1 protein (HMGB1), a lethal late inflammatory mediator, contributes to the pathogenesis of diverse inflammatory and infectious diseases. Astragaloside IV and calycosin as active ingredients in Astragalus membranaceus, possess potent regulatory ability on HMGB1-induced inflammation, however, the interaction between these two phytochemicals and HMGB1 has not been elucidated yet. METHODS: To further investigate the interaction of astragaloside IV, calycosin with HMGB1 protein, surface plasma resonance (SPR) and a series of spectroscopic methods, including UV spectra, fluorescence spectroscopy, circular dichroism (CD), were used. Molecular docking was also carried out to predict the atomic level's binding modes between two components and HMGB1. RESULTS: Astragaloside IV and calycosin were found to be able to bind HMGB1 directly and affect the secondary structure and environment of the chromogenic amino acids of HMGB1 to different extents. In silico, astragaloside IV and calycosin showed a synergistic effect by binding to the two independent domains B-box and A-box in HMGB1, respectively, where hydrogen and hydrophobicity bonds were regarded as the crucial forces. CONCLUSION: These findings showed that the interaction of astragaloside IV and calycosin with HMGB1 impaired its proinflammatory cytokines function, providing a new perspective for understanding the mechanism of A. membranaceus in treating aseptic and infectious diseases.

15.
Article in English | MEDLINE | ID: mdl-37992732

ABSTRACT

BACKGROUND: Spinal cord hemangioblastomas are rare benign and highly vascular tumors that develop either sporadically or as part of von Hippel-Lindau (VHL) disease. Generally, complete resection without significant neurologic deficit remains considerably challenging due to the risk of massive bleeding. The current study therefore aimed to describe en bloc resection of spinal cord hemangioblastomas according to the typical anatomical structures of peripheral lesions and evaluate the neurofunctional prognosis of this technique. METHODS: A total of 39 spinal cord hemangioblastomas from a series of 19 patients who underwent en bloc resection were retrospectively analyzed. In all cases, clinical and radiologic characteristics, as well as surgical tenets, were retrospectively determined and analyzed. Short- and long-term outcomes were analyzed using the McCormick grade and Odom's criteria. Factors significantly associated with poor neurologic function after en bloc resection were also determined. RESULTS: All 39 spinal cord hemangioblastomas, including 28 intramedullary, 2 intramedullary-extramedullary, and 9 extramedullary lesions, were located dorsally or dorsolaterally (100.0%). The most common lesion location was the thoracic segment (53.8%), with most of the lesions being accompanied by syringomyelia (94.7%). Long-term follow-up (mean: 103 ± 50.4 months) for prognosis determination revealed that 88.2% (15/17) of all cases had stable or improved neurofunctional outcomes according to the McCormick grade and Odom's criteria. Only one case with VHL disease developed recurrence 4 years after surgery. Additionally, statistical analysis showed that VHL disease was an independent prognostic factor associated with deteriorating neurologic function (p = 0.015). CONCLUSIONS: En bloc resection facilitated satisfactory long-term functional outcomes in patients with spinal cord hemangioblastomas. Given that VHL disease was identified as a predictor of poor long-term outcomes, regular long-term follow-up of patients with VHL-associated spinal cord hemangioblastoma seems necessary.

16.
Int Immunopharmacol ; 118: 109987, 2023 May.
Article in English | MEDLINE | ID: mdl-36924564

ABSTRACT

INTRODUCTION: Glioblastoma is a primary intracranial tumour with extremely high disability and fatality rates among adults. Existing diagnosis and treatment methods have not significantly improved the overall poor prognosis of patients. Nifuroxazide, an oral antibiotic, has been reported to act as a tumour suppressor in a variety of tumours and to participate in the process of antitumour immunity. However, whether it can inhibit the growth of glioma is still unclear. METHODS: We explored the potential mechanism of nifuroxazide inhibiting the growth of glioblastoma cells through in vitro and in vivo experiments. RESULTS: nifuroxazide can inhibit the proliferation of glioblastoma cells, promote G2 phase arrest, induce apoptosis, and inhibit epithelial-mesenchymal transition through the MAP3K1/JAK2/STAT3 pathway. Similarly, clinical sample analysis confirmed that MAP3K1 combined with STAT3 can affect the prognostic characteristics of patients with glioma. In addition, nifuroxazide can drive the M1 polarization of microglioma cells, inhibit the expression of CTLA4 and PD-L1 in tumour cells, and promote the infiltration of CD8 T cells to exert antitumour effects. Combination treatment with PD-L1 inhibitors can significantly prolong the survival time of mice. CONCLUSION: we found that nifuroxazide can inhibit the growth of glioblastoma and enhance antitumour immunity. Thus, nifuroxazide is an effective drug for the treatment of glioblastoma and has great potential for clinical application.


Subject(s)
Glioblastoma , Nitrofurans , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/pathology , Nitrofurans/pharmacology , Nitrofurans/therapeutic use , Hydroxybenzoates/pharmacology , Hydroxybenzoates/therapeutic use , CD8-Positive T-Lymphocytes , Cell Line, Tumor
17.
Front Genet ; 13: 850888, 2022.
Article in English | MEDLINE | ID: mdl-35571034

ABSTRACT

Genome instability is a hallmark of tumors and is involved in proliferation, invasion, migration, and treatment resistance of many tumors. However, the relationship of genome instability with gliomas remains unclear. Here, we constructed genome instability-derived long non-coding RNA (lncRNA)-based gene signatures (GILncSig) using genome instability-related lncRNAs derived from somatic mutations. Multiple platforms were used to confirm that the GILncSig were closely related to patient prognosis and clinical characteristics. We found that GILncSig, the glioma microenvironment, and glioma cell DNA methylation-based stemness index (mDNAsi) interacted with each other to form a complex regulatory network. In summary, this study confirmed that GILncSig was an independent prognostic indicator for patients, distinguished high-risk and low-risk groups, and affected immune-cell infiltration and tumor-cell stemness indicators (mDNAsi) in the tumor microenvironment, resulting in tumor heterogeneity and immunotherapy resistance. GILncSig are expected to provide new molecular targets for the clinical treatment of patients with gliomas.

18.
Front Oncol ; 12: 887294, 2022.
Article in English | MEDLINE | ID: mdl-35651787

ABSTRACT

The natural product pectolinarigenin exerts anti-inflammatory activity and anti-tumor effects, and exhibits different biological functions, particularly in autophagy and cell cycle regulation. However, the antineoplastic effect of pectolinarigenin on glioblastoma (GBM) remains unclear. In the present study, we found that pectolinarigenin inhibits glioblastoma proliferation, increases autophagic flux, and induces cell cycle arrest by inhibiting ribonucleotide reductase subunit M2 (RRM2), which can be reversed by RRM2 overexpression plasmid. Additionally, pectolinarigenin promoted RRM2 protein degradation via autolysosome-dependent pathway by increasing autophagic flow. RRM2 knockdown promoted the degradation of CDK1 protein through autolysosome-dependent pathway by increasing autophagic flow, thereby inhibiting the proliferation of glioblastoma by inducing G2/M phase cell cycle arrest. Clinical data analysis revealed that RRM2 expression in glioma patients was inversely correlated with the overall survival. Collectively, pectolinarigenin promoted the degradation of CDK1 protein dependent on autolysosomal pathway through increasing autophagic flux by inhibiting RRM2, thereby inhibiting the proliferation of glioblastoma cells by inducing G2/M phase cell cycle arrest, and RRM2 may be a potential therapeutic target and a prognosis and predictive biomarker in GBM patients.

19.
J Cancer Res Clin Oncol ; 147(5): 1315-1324, 2021 May.
Article in English | MEDLINE | ID: mdl-33543328

ABSTRACT

PURPOSE: The identification of HER2 overexpression in a subset of gastric adenocarcinoma (GA) patients represents a significant step forward in unveiling the molecular complexity of this disease. The predictive and prognostic value of HER2 amplification in advanced HER2 inhibitor-treated GA patients has been investigated. However, its predictive value in resectable patients remains elusive. METHODS: We enrolled 98 treatment-naïve resectable Chinese GA patients with HER2 overexpression assessed using IHC. Capture-based targeted sequencing using a panel consisting of 41 gastrointestinal cancer-related genes was performed on tumor tissues. Furthermore, we also investigated the correlation between HER2 copy number (CN) and survival outcomes. RESULTS: Of the 98 HER2-overexpressed patients, 90 had HER2 CN amplification assessed using next-generation sequencing, achieving 92% concordance. The most commonly seen concurrent mutations were occurring in TP53, EGFR and PIK3CA. We found HER2 CN as a continuous variable was an independent predictor associated with DFS (p = 0.029). Our study revealed HER2 CN-high patients showed a trend of intestinal-type GA predominant (p = 0.075) and older age (p = 0.07). The median HER2 CN was 15.34, which was used to divide the cohort into CN-high and CN-low groups. Patients with high HER2 CN had a significantly shorter DFS than patients with low HER2 CN (p = 0.002). Furthermore, HER2 CN as a categorical variable was also an independent predictor associated with DFS in patients. CONCLUSION: We elucidated the mutation spectrum of HER2-positive resectable Chinese GA patients and the association between HER2 CN and DFS. Our work revealed HER2 CN as an independent risk factor predicted unfavorable prognosis in HER2-positive GA patients and allowed us to further stratify HER2-positive resectable GA patients for disease management.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/mortality , DNA Copy Number Variations/genetics , Receptor, ErbB-2/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality , Adult , Aged , Aged, 80 and over , Cohort Studies , Disease-Free Survival , Female , Gene Amplification/genetics , Humans , Male , Middle Aged , Mutation/genetics , Prognosis
20.
J Cancer ; 12(20): 6189-6197, 2021.
Article in English | MEDLINE | ID: mdl-34539892

ABSTRACT

Purpose: Brain gliomas are the most common primary malignant tumors of the central nervous system and one of the leading causes of death in patients with intracranial tumors. The lncRNA RPL34-AS1 is significantly upregulated in glioma tissues. However, the biological function of RPL34-AS1, especially in proliferation in glioma, remains unclear. Methods: The role of RPL34-AS1 in proliferation and angiogenesis in glioma cells was investigated using the LN229, U87, and U251 glioma cell lines. The levels of RPL34-AS1 were detected using real-time quantitative reverse transcription polymerase chain reaction. CCK-8 and colony formation assays were performed to determine the role of RPL34-AS1 in proliferation and survival, and its role in angiogenesis was assessed by an endothelial tube formation assay. Changes in protein levels were assessed by western blotting. Results: RPL34-AS1 was upregulated in glioma tissues and was correlated with tumor grade. RPL34-AS1 expression was also higher in glioma cells than in normal astrocytes. Knockdown of RPL34-AS1 blocked glioma cell proliferation by inhibiting angiogenesis. This effect occurred through decreased ERK/AKT signaling. Conclusions: This study suggests that RPL34-AS1 affects cell proliferation and angiogenesis in glioma and therefore may potentially serve as a valuable diagnostic and prognostic biomarker and therapeutic target in patients with glioma.

SELECTION OF CITATIONS
SEARCH DETAIL