Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 609(7929): 986-993, 2022 09.
Article in English | MEDLINE | ID: mdl-36104568

ABSTRACT

Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.


Subject(s)
Arabidopsis , Glucose , Mechanistic Target of Rapamycin Complex 2 , Phosphatidylinositol 3-Kinases , Plant Development , Polycomb Repressive Complex 2 , Repressor Proteins , Signal Transduction , Arabidopsis/embryology , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Regulation, Plant , Gene Silencing , Glucose/metabolism , Histones/chemistry , Histones/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Plant Development/genetics , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics
2.
Plant Physiol ; 194(4): 1980-1997, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38124490

ABSTRACT

Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.


Subject(s)
Epigenesis, Genetic , Histones , Histones/genetics , Histones/metabolism , Cues , Plants/genetics , Plants/metabolism , Plant Development/genetics
3.
Mol Cell ; 61(2): 222-35, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26711010

ABSTRACT

DNA methylation directed by 24-nucleotide (nt) small interfering RNAs (siRNAs) plays critical roles in gene regulation and transposon silencing in Arabidopsis. 24-nt siRNAs are known to be processed from double-stranded RNAs by Dicer-like 3 (DCL3) and loaded into the effector Argonaute 4 (AGO4). Here we report a distinct class of siRNAs independent of DCLs (sidRNAs). sidRNAs are present as ladders of ∼ 20-60 nt in length, often having the same 5' ends but differing in 3' ends by 1-nt steps. We further show that sidRNAs are associated with AGO4 and capable of directing DNA methylation. Finally we show that sidRNA production depends on distributive 3'-5' exonucleases. Our findings suggest an alternative route for siRNA biogenesis. Precursor transcripts are bound by AGO4 and subsequently subjected to 3'-5' exonucleolytic trimming for maturation. We propose that sidRNAs generated through this route are the initial triggers of de novo DNA methylation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Methylation , RNA, Small Interfering/biosynthesis , Arabidopsis Proteins/genetics , Argonaute Proteins/metabolism , Base Sequence , Genome, Plant , Molecular Sequence Data , Mutation/genetics , RNA, Plant/genetics , RNA-Dependent RNA Polymerase/genetics , Seedlings/genetics
4.
Mol Cell ; 46(6): 859-70, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22608924

ABSTRACT

In plants, DNA methylation can be mediated by a class of Argonaute4 (AGO4)-associated heterochromatic siRNAs (hc-siRNAs), through a pathway termed RNA-directed DNA methylation (RdDM). It has been thought that RdDM is solely a nuclear process, as both the biogenesis and functioning of hc-siRNAs take place in the nucleus. In this study, we unexpectedly found that hc-siRNAs are predominantly present in the cytoplasm. We demonstrated that AGO4 is loaded with hc-siRNAs in the cytoplasm and the formation of mature AGO4/siRNA complexes requires HSP90 and the cleavage activity of AGO4. Intriguingly, siRNA binding facilitates the redistribution of AGO4 into the nucleus, likely through inducing conformational change that leads to the exposure of the nuclear localization signal (NLS). Our findings reveal an unsuspected cytoplasmic step in the RdDM pathway. We propose that selective nuclear import of mature AGO4/siRNA complexes is a key regulatory point prior to the effector stage of RdDM.


Subject(s)
Active Transport, Cell Nucleus , Arabidopsis Proteins/metabolism , Argonaute Proteins/metabolism , Cytoplasm/metabolism , RNA, Small Interfering/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Argonaute Proteins/genetics , Binding Sites , Cell Nucleus/metabolism , DNA Methylation , DNA, Plant/genetics , DNA, Plant/metabolism , Gene Silencing , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Models, Biological , Nuclear Localization Signals , RNA, Plant/genetics , RNA, Plant/metabolism
5.
Plant Cell ; 23(10): 3565-76, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21984696

ABSTRACT

As key components in the eukaryotic gene regulatory network, microRNAs (miRNAs) themselves are regulated at the level of both metabolism and activity. To identify factors that modulate miRNA activity, we used an Arabidopsis thaliana transgenic line expressing an artificial miRNA that causes trichome clustering and performed a screen for mutants with compromised miRNA activity (cma mutants) or enhanced miRNA activity (ema mutants). From this screen, we identified two novel mutant alleles of SERRATE, which is known to be required for miRNA biogenesis and dozens of other cma and ema mutants. In this study, we analyzed ema1. SAD2/EMA1 encodes an Importin ß protein. The ema1 mutation had no effects on the accumulation of miRNAs and ARGONAUTE1 (AGO1) or on their cytoplasmic and nuclear distributions. Intriguingly, we found that the miRNA effector complexes purified from ema1 contained a larger amount of miRNAs and displayed elevated mRNA cleavage activities, indicating that EMA1 modulates miRNA activity by influencing the loading of miRNAs into AGO1 complexes. These results implicate EMA1 as a negative regulator of the miRNA pathway and reveal a novel layer of miRNA activity modulation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Argonaute Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Karyopherins/metabolism , MicroRNAs/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Argonaute Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Chromosome Mapping , Cytoplasm/genetics , Cytoplasm/metabolism , Karyopherins/genetics , Mutagenesis , Mutation , Phenotype , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Plant/genetics , Seedlings/genetics , Seedlings/metabolism , Seedlings/ultrastructure , Sequence Analysis, DNA
6.
Mol Plant ; 17(2): 240-257, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38053337

ABSTRACT

Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH4) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE). In this study, we discovered that the target of rapamycin (TOR) signaling pathway is compromised in rice under WST. Polysome profiling-coupled transcriptome sequencing (polysome-seq) analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity. Molecular, biochemical, and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST. Intriguingly, ammonium exhibited a greater ability to alleviate growth constraints under WST by enhancing TOR signaling, which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation. We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5' untranslated region. Collectively, these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE. Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.


Subject(s)
Ammonium Compounds , Oryza , Oryza/genetics , Plant Breeding , Agriculture/methods , Nitrogen/metabolism , Water/metabolism , Signal Transduction , Ammonium Compounds/metabolism , Soil/chemistry , Fertilizers/analysis
7.
Methods Mol Biol ; 2690: 137-147, 2023.
Article in English | MEDLINE | ID: mdl-37450145

ABSTRACT

Identification of protein-protein interactions (PPIs) and protein kinase substrates is fundamental for understanding how proteins exert biological functions with their partners and targets. However, it is still technically challenging, especially for transient and weak interactions involved in most cellular processes. The proximity-tagging systems enable capturing snapshots of both stable and transient PPIs. In this chapter, we describe in detail the methodology of a novel proximity-based labeling approach, PUP-IT (pupylation-based interaction tagging), to identify PPIs using a protoplast transient expression system. We have successfully identified potential kinase substrates by targeted screening and tandem mass spectrometry analysis.


Subject(s)
Bacterial Proteins , Plant Cells , Plant Cells/metabolism , Bacterial Proteins/metabolism , Tandem Mass Spectrometry
8.
Elife ; 42015 Feb 17.
Article in English | MEDLINE | ID: mdl-25688565

ABSTRACT

Viral pathogens are a major threat to rice production worldwide. Although RNA interference (RNAi) is known to mediate antiviral immunity in plant and animal models, the mechanism of antiviral RNAi in rice and other economically important crops is poorly understood. Here, we report that rice resistance to evolutionarily diverse viruses requires Argonaute18 (AGO18). Genetic studies reveal that the antiviral function of AGO18 depends on its activity to sequester microRNA168 (miR168) to alleviate repression of rice AGO1 essential for antiviral RNAi. Expression of miR168-resistant AGO1a in ago18 background rescues or increases rice antiviral activity. Notably, stable transgenic expression of AGO18 confers broad-spectrum virus resistance in rice. Our findings uncover a novel cooperative antiviral activity of two distinct AGO proteins and suggest a new strategy for the control of viral diseases in rice.


Subject(s)
Argonaute Proteins/physiology , Oryza/virology , Argonaute Proteins/genetics , Humans , Oryza/genetics , Plant Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL