Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Affiliation country
Publication year range
1.
J Med Virol ; 96(3): e29475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38415472

ABSTRACT

To investigate age and type-specific prevalences of high-risk human papillomavirus (hrHPV) and cervical intraepithelial neoplasia (CIN) in hrHPV+ women referred to colposcopy. This is a retrospective, multicenter study. Participants were women referred to one of seven colposcopy clinics in China after testing positive for hrHPV. Patient characteristics, hrHPV genotyping, colposcopic impressions, and histological diagnoses were abstracted from electronic records. Main outcomes were age-related type-specific prevalences associated with hrHPV and CIN, and colposcopic accuracy. Among 4419 hrHPV+ women referred to colposcopy, HPV 16, 52, and 58 were the most common genotypes. HPV 16 prevalence was 39.96%, decreasing from 42.57% in the youngest group to 30.81% in the eldest group. CIN3+ prevalence was 15.00% and increased with age. As lesion severity increases, HPV16 prevalence increased while the prevalence of HPV 52 and 58 decreased. No age-based trend was identified with HPV16 prevalence among CIN2+, and HPV16-related CIN2+ was less common in women aged 60 and above (44.26%) compared to those younger than 60 years (59.61%). Colposcopy was 0.73 sensitive at detecting CIN2+ (95% confidence interval[CI]: 0.71, 0.75), with higher sensitivity (0.77) observed in HPV16+ women (95% CI: 0.74, 0.80) compared to HPV16- women (0.68, 95% CI: 0.64, 0.71). Distributions of hrHPV genotypes, CIN, and type-specific CIN in Chinese mainland hrHPV+ women referred to colposcopy were investigated for the first time. Distributions were found to be age-dependent and colposcopic performance appears related to HPV genotypes. These findings could be used to improve the management of women referred to colposcopy.


Subject(s)
Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , Pregnancy , Male , Colposcopy , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/pathology , Retrospective Studies , Papillomavirus Infections/diagnosis , Papillomavirus Infections/epidemiology , Papillomavirus Infections/complications , Uterine Cervical Dysplasia/epidemiology , Genotype , Human papillomavirus 16/genetics , Papillomaviridae/genetics , Early Detection of Cancer
2.
J Nanobiotechnology ; 22(1): 7, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38166931

ABSTRACT

Radionuclides internal radiotherapy (RIT) is a clinically powerful method for cancer treatment, but still poses unsatisfactory therapeutic outcomes due to the hypoxic characteristic of tumor microenvironment (TME). Catalase (CAT) or CAT-like nanomaterials can be used to enzymatically decompose TME endogenous H2O2 to boost TME oxygenation and thus alleviate the hypoxic level within tumors, but their effectiveness is still hindered by the short-lasting of hypoxia relief owing to their poor stability or degradability, thereby failing to match the long therapeutic duration of RIT. Herein, we proposed an innovative strategy of using facet-dependent CAT-like Pd-based two-dimensional (2D) nanoplatforms to continuously enhance RIT. Specifically, rationally designed 2D Pd@Au nanosheets (NSs) enable consistent enzymatic conversion of endogenous H2O2 into O2 to overcome hypoxia-induced RIT resistance. Furthermore, partially coated Au layer afford NIR-II responsiveness and moderate photothermal treatment that augmenting their enzymatic functionality. This approach with dual-effect paves the way for reshaping TME and consequently facilitating the brachytherapy ablation of cancer. Our work offers a significant advancement in the integration of catalytic nanomedicine and nuclear medicine, with the overarching goal of amplifying the clinical benefits of RIT-treated patients.


Subject(s)
Nanoparticles , Neoplasms , Humans , Hydrogen Peroxide , Tumor Microenvironment , Hypoxia/drug therapy , Catalysis , Nanomedicine , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/radiotherapy
3.
Am J Obstet Gynecol ; 229(5): 538.e1-538.e9, 2023 11.
Article in English | MEDLINE | ID: mdl-37516400

ABSTRACT

BACKGROUND: Colposcopy is a cornerstone of cervical cancer prevention; however, there is a global shortage of colposcopists. It is challenging to train a sufficient number of colposcopists through in-person methods, which hinders our ability to adequately diagnose and manage positive cases. A digital platform is needed to make colposcopy training more efficient, scalable, and sustainable; however, current online training programs are generally based on didactic curricula that do not incorporate image analysis training. In addition, long-term assessments of online training are not readily available. Therefore, innovative digital training and an assessment of its effectiveness are needed. OBJECTIVE: This study aimed to evaluate the short- and long-term effects of DECO (an online Digital Education Tool for Colposcopy) on trainees' colposcopy competencies and confidence. STUDY DESIGN: DECO can be used both on laptops and smartphones and comprises 4 training modules (image interpretation; terminology learning; video teaching; and collection of guidelines and typical cases) and 2 test modules. DECO was tested through a pre-post study between September and November 2022. Participants were recruited in China, and DECO training lasted 12 days. Trainees initially learned basic theory before completing training using 200 image-based cases. Pretest, posttest, and follow-up testing included 20 distinct image-based questions, and was conducted on Days 0, 13, and 60. Primary outcomes were competence and confidence scores. Secondary measures were response distributions for colposcopic diagnoses, biopsies, and DECO training satisfaction. Multilevel modeling was used to determine improvement from baseline to posttraining and follow-up for the outcomes of interest. RESULTS: Among 402 participants recruited, 96.8% (n=389) completed pretesting, 84.1% (n=338) posttesting, and 75.1% (n=302) follow-up testing. Colposcopic competence and confidence increased across this study. Diagnostic scores improved on average from 55.3 (53.7-56.9) to 70.4 (68.9-71.9). The diagnostic accuracy for normal/benign lesions, low-grade squamous intraepithelial lesions, and high-grade squamous intraepithelial lesions or worse increased by 16.9%, 13.1%, and 16.9%, respectively. Mean confidence scores increased from 48.1 (45.6-50.6) to 56.2 (54.5-57.9). These improvements remained evident 2 months after training. Trainees were also satisfied with DECO overall. Most found DECO to be scientific (82.5%), easy to use (75.2%), and clinically useful (98.4%), and would recommend it to colleagues (93.2%). CONCLUSION: DECO is a useful, acceptable digital education tool that improves colposcopy competencies and confidence. DECO could make colposcopy training more efficient, scalable, and sustainable because there are no geographic or time limitations. Therefore, DECO could be used to alleviate the shortage of trained colposcopists around the world.


Subject(s)
Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Pregnancy , Humans , Colposcopy/methods , Uterine Cervical Neoplasms/pathology , Biopsy , Time Factors , Curriculum , Uterine Cervical Dysplasia/pathology
4.
J Med Internet Res ; 25: e43832, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36862499

ABSTRACT

BACKGROUND: A number of publications have demonstrated that deep learning (DL) algorithms matched or outperformed clinicians in image-based cancer diagnostics, but these algorithms are frequently considered as opponents rather than partners. Despite the clinicians-in-the-loop DL approach having great potential, no study has systematically quantified the diagnostic accuracy of clinicians with and without the assistance of DL in image-based cancer identification. OBJECTIVE: We systematically quantified the diagnostic accuracy of clinicians with and without the assistance of DL in image-based cancer identification. METHODS: PubMed, Embase, IEEEXplore, and the Cochrane Library were searched for studies published between January 1, 2012, and December 7, 2021. Any type of study design was permitted that focused on comparing unassisted clinicians and DL-assisted clinicians in cancer identification using medical imaging. Studies using medical waveform-data graphics material and those investigating image segmentation rather than classification were excluded. Studies providing binary diagnostic accuracy data and contingency tables were included for further meta-analysis. Two subgroups were defined and analyzed, including cancer type and imaging modality. RESULTS: In total, 9796 studies were identified, of which 48 were deemed eligible for systematic review. Twenty-five of these studies made comparisons between unassisted clinicians and DL-assisted clinicians and provided sufficient data for statistical synthesis. We found a pooled sensitivity of 83% (95% CI 80%-86%) for unassisted clinicians and 88% (95% CI 86%-90%) for DL-assisted clinicians. Pooled specificity was 86% (95% CI 83%-88%) for unassisted clinicians and 88% (95% CI 85%-90%) for DL-assisted clinicians. The pooled sensitivity and specificity values for DL-assisted clinicians were higher than for unassisted clinicians, at ratios of 1.07 (95% CI 1.05-1.09) and 1.03 (95% CI 1.02-1.05), respectively. Similar diagnostic performance by DL-assisted clinicians was also observed across the predefined subgroups. CONCLUSIONS: The diagnostic performance of DL-assisted clinicians appears better than unassisted clinicians in image-based cancer identification. However, caution should be exercised, because the evidence provided in the reviewed studies does not cover all the minutiae involved in real-world clinical practice. Combining qualitative insights from clinical practice with data-science approaches may improve DL-assisted practice, although further research is required. TRIAL REGISTRATION: PROSPERO CRD42021281372; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=281372.


Subject(s)
Deep Learning , Neoplasms , Humans , Neoplasms/diagnostic imaging , Algorithms , Data Science
6.
EMBO Rep ; 21(1): e47929, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31868295

ABSTRACT

Adipose tissue controls numerous physiological processes, and its dysfunction has a causative role in the development of systemic metabolic disorders. The role of posttranscriptional regulation in adipose metabolism has yet to be fully understood. Here, we show that the RNA-binding protein quaking (QKI) plays an important role in controlling metabolic homeostasis of the adipose tissue. QKI-deficient mice are resistant to high-fat-diet (HFD)-induced obesity. Additionally, QKI depletion increased brown fat energy dissipation and browning of subcutaneous white fat. Adipose tissue-specific depletion of QKI in mice enhances cold-induced thermogenesis, thereby preventing hypothermia in response to cold stimulus. Further mechanistic analysis reveals that QKI is transcriptionally induced by the cAMP-cAMP response element-binding protein (CREB) axis and restricts adipose tissue energy consumption by decreasing stability, nuclear export, and translation of mRNAs encoding UCP1 and PGC1α. These findings extend our knowledge of the significance of posttranscriptional regulation in adipose metabolic homeostasis and provide a potential therapeutic target to defend against obesity and its related metabolic diseases.


Subject(s)
Adipose Tissue, Brown , Thermogenesis , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
7.
Chin J Cancer Res ; 34(4): 395-405, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36199535

ABSTRACT

Objective: This study aimed to develop a nomogram that can predict occult high-grade squamous intraepithelial lesions or worse (HSIL+) and determine the need for endocervical curettage (ECC) in patients referred for colposcopy. Methods: This retrospective multicenter study included 4,149 patients who were referred to any one of six tertiary hospitals in China for colposcopy between January 2020 and November 2021 because of abnormal screening results. ECC data were extracted from the medical records. Univariate and multivariate logistic regression analyses were performed to identify factors that could predict HSIL+ on ECC. Patients were randomly assigned to a training set or to an internal validation set for performance and comparability testing. The model was externally validated and tested in patients from two additional hospitals. The nomogram was assessed in terms of discrimination and calibration and subjected to decision curve analysis. Results: HSIL+ was found on ECC in 38.8% (n=388) of cases. Our predictive nomogram included age group, cytology, human papillomavirus (HPV) status, visibility of the cervix and colposcopic impression. The nomogram had good overall discrimination, which was internally validated [area under the receiver-operator characteristic (AUC), 0.839; 95% confidence interval (95% CI), 0.773-0.904]. In terms of external validation, the AUC was 0.843 (95% CI, 0.773-0.912) for the consecutive sample and 0.843 (95% CI, 0.783-0.902) for the comparative sample. Calibration analysis suggested good consistency between predicted and observed probabilities. Decision curve analysis suggested this nomogram would be clinically useful with almost the entire range of threshold probabilities. Conclusions: This internally and externally validated nomogram can be easily applied and incorporates multiple clinically relevant variables that can be used to identify patients with occult HSIL+ who need ECC.

8.
Small ; 17(46): e2103645, 2021 11.
Article in English | MEDLINE | ID: mdl-34668309

ABSTRACT

Nanozyme-based cascade reaction has emerged as an effective strategy for disease treatment because of its high efficiency and low side effects. Herein, a new and highly active two-dimensional Pd-Ru nanozyme is prepared and then integrated with uricase and red blood cell (RBC) membrane to fabricate a tandem nanoreactor, Pd-Ru/Uricase@RBC, for hyperuricemia treatment. The designed Pd-Ru/Uricase@RBC nanoreactor displayed not only good stability against extreme pH, temperature and proteolytic degradation, but also long circulation half-life and excellent safety. The nanoreactor can effectively degrade UA by uricase to allantoin and H2 O2 and remove H2 O2 by using Pd-Ru nanosheets (NSs) with the catalase (CAT)-like activity. More importantly, the finally produced O2 from H2 O2 decomposition can in turn facilitate the catalytic oxidation of UA, as the degradation of UA is an O2 consumption process. By integrating the high-efficiency enzymatic activity, long circulation capability, and good biocompatibility, the designed Pd-Ru/Uricase@RBC can effectively and safely treat hyperuricemia without side effects. The study affords a new alternative for the exploration of clinical treatment of hyperuricemia.


Subject(s)
Hyperuricemia , Urate Oxidase , Cell Membrane , Humans , Hyperuricemia/drug therapy , Nanotechnology , Uric Acid
9.
Biochem Biophys Res Commun ; 513(2): 439-445, 2019 05 28.
Article in English | MEDLINE | ID: mdl-30967270

ABSTRACT

MOTS-c, as a mitochondria derived peptide, exerts benefits for insulin resistance in HFD mice and against various stresses in an AMPK dependent way. Here, in the D-galactose chronic injection models, exogenous MOTS-c was given to determine its direct anti-aging effects. The body weight, insulin sensitivity and blood glucose were determined with mild differences. Tissue morphology analyses disclosed that liver, visceral fat and dermal skin, all displayed aberrant lipid depositions in the D-galactose mice. MOTS-c treatment largely alleviated the lipid accumulations, corresponding with positive changes in mitochondria dynamics, observed in liver transmission electron microscopy and in altered mRNA levels of Drp1 and mitofusins. Notably, the aging phenotypes of small intestine tract were more obvious, including histological defects and lower Ki67 levels, plus with the higher levels of DNA stress, such as P21 and P16, as well as mitochondria dynamics. Collectively, these data provided the direct evidence to support that exogenous givings of MOTS-c prevented abnormal fat accumulations in D-gal mice, putatively via improvement of mitochondria dynamic related pathways.


Subject(s)
Galactose/metabolism , Mitochondrial Proteins/pharmacology , Peptides/pharmacology , Aging/drug effects , Animals , Blood Glucose/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Mice , Mice, Inbred BALB C , Mitochondria/metabolism
10.
Pharmacol Res ; 147: 104381, 2019 09.
Article in English | MEDLINE | ID: mdl-31369811

ABSTRACT

The Mitochondrial-derived peptide MOTS-c has recently been reported as a 16-amino acid peptide regulating metabolism and homeostasis in different cells. However, its effects on immune cells and bone metabolism are rarely reported. Here we demonstrate that MOTS-c treatment in ultra-high molecular weight polyethylene (UHMWPE) particle-induced osteolysis mouse model alleviated bone erosion and inflammation. MOTS-c increased osteoprotegerin (OPG)/ receptor activator of nuclear factor kappa-B ligand (RANKL) ratio in osteocytes, leading to inhibition of osteoclastogenesis. In primary bone marrow macrophages (BMMs) MOTS-c alleviated STAT1 and NF-κB phosphorylation triggered by UHMWPE particles. Promoting ROS production or suppressing peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) repression blocked these anti-inflammatory effects of MOTS-c treatment. Taken together, these findings provide evidence that the small peptide inhibits osteoclastogenesis by regulating osteocyte OPG/RANKL secretion and suppressing inflammation via restraining NF-κB and STAT1 pathway. Moreover, its effects on NF-κB activation is dependent on the AMPK-PGC-1α-ROS axis, suggesting its potential use in osteolysis and other inflammation disorders.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mitochondrial Proteins/pharmacology , Mitochondrial Proteins/therapeutic use , Osteolysis/drug therapy , Skull/drug effects , Animals , Cells, Cultured , Cytokines/genetics , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteocytes/drug effects , Osteocytes/metabolism , Osteogenesis/drug effects , Osteolysis/chemically induced , Osteolysis/metabolism , Polyethylene , RANK Ligand/genetics , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Skull/metabolism , Skull/pathology
11.
J Bone Miner Metab ; 37(3): 399-410, 2019 May.
Article in English | MEDLINE | ID: mdl-30032440

ABSTRACT

Metformin, an anti-hyperglycemic agent used for type 2 diabetes, has recently been found to have more effects apart from glucose regulation. We found that, in ultra-high-molecular-weight polyethylene particle-induced osteolysis mouse models, metformin had bone protect property and reduced the negative regulator of bone formation sclerostin (SOST) and Dickkopf-related protein 1 (DKK1), and increased osteoprotegerin (OPG) secretion and the ratio of OPG/Receptor Activator for Nuclear Factor-κB Ligand (RANKL). In vitro, we established a 3D co-culture system in which metformin affects osteoblasts and osteoclasts through mature osteocytes secretion. Metformin (50 µM) significantly decreased SOST and DKK1 mRNA expression, stimulating alkaline phosphatase activity and proliferation of osteoblast, and increased OPG secretion and the ratio of OPG/RANKL, inhibiting osteoclastogenesis. Moreover, the effect on OPG was reversed by adenosine 5'-monophosphate-activated protein kinase inhibitor, Compound C. Our finding suggests that metformin induces differentiation and mineralization of osteoblasts, while inhibits osteoclastogenesis via mature osteocytes secretion. Therefore, the drug might be beneficial for not only diabetes but also in other bone disorders by acting on mature osteocytes.


Subject(s)
Bone and Bones/drug effects , Bone and Bones/pathology , Metformin/pharmacology , Osteocytes/metabolism , Osteolysis/chemically induced , Polyethylenes/adverse effects , Protective Agents/pharmacology , Adaptor Proteins, Signal Transducing , Adenylate Kinase/metabolism , Animals , Bone and Bones/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Glycoproteins/metabolism , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Organ Size/drug effects , Osteocytes/drug effects , Osteogenesis/drug effects , Osteolysis/pathology , Osteoprotegerin/metabolism , Phosphorylation/drug effects , RANK Ligand/metabolism , Skull/drug effects , Skull/pathology
12.
Acta Biochim Biophys Sin (Shanghai) ; 51(1): 9-19, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30566575

ABSTRACT

Contact inhibition adjusts organ size to the proper size and ensures the cultured cells growing to a monolayer. By regulating the downstream coordinator YAP, the evolutionarily conserved Hippo transduction pathway attunes cell growth and death in response to cell contact inhibition, polarity, self-renewal, and differentiation. Dysregulation of this pathway is involved in various diseases such as cancer. RNA-binding protein QKI regulates cell proliferation, metabolism, division, and immunity in various cancer models, but its role in cancer cell contact inhibition remains unclear. In this study, we aimed to clarify the relationship between QKI and YAP, and the role of their interaction in cell contact inhibition. We found a lower QKI expression level in sparse condition, whereas a higher expression level in confluent condition by western blot analysis and immunofluorescence assay. QKI knockdown elevated cell proliferation and invasion both in vitro and in vivo. Strikingly, the results of CCK-8 assay, colony formation assay, and transwell assay showed that the phenomenon was in accord with the expression level of pYAP and reverse with YAP. Higher levels of Wnt3a and ß-catenin were also found in xenografts of QKI-knockdown clear cell renal cell carcinoma (ccRCC) CAKI-1 cells by western blot analysis and immumohistochemical staining. Finally, a positive correlation between QKI and pYAP was found in clinical specimens by immunohistochemistry. Thus, as a negative regulator of YAP, QKI attuned the cell contact inhibition, leading to inhibition of cancer cell proliferation and invasion through Wnt and GPCR pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Contact Inhibition/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Phosphoproteins/genetics , RNA Interference , RNA-Binding Proteins/genetics , Transcription Factors , Transplantation, Heterologous , YAP-Signaling Proteins
13.
Biochem Biophys Res Commun ; 466(2): 247-53, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26362189

ABSTRACT

Brown adipose tissue converts energy from food into heat via the mitochondrial uncoupling protein UCP1, defending against cold. In some conditions, inducible 'brown-like' adipocytes, also known as beige adipocytes, can develop within white adipose tissue (WAT). These beige adipocytes have characteristics similar to classical brown adipocytes and thus can burn lipids to produce heat. In the current study, we demonstrated that curcumin (50 or 100 mg/kg/day) decreased bodyweight and fat mass without affecting food intake in mice. We further demonstrated that curcumin improves cold tolerance in mice. This effect was possibly mediated by the emergence of beige adipocytes and the increase of thermogenic gene expression and mitochondrial biogenesis in inguinal WAT. In addition, curcumin promotes ß3AR gene expression in inguinal WAT and elevates the levels of plasma norepinephrine, a hormone that can induce WAT browning. Taken together, our data suggest that curcumin can potentially prevent obesity by inducing browning of inguinal WAT via the norepinephrine-ß3AR pathway.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Curcumin/pharmacology , Norepinephrine/physiology , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Animals , Gene Expression , Male , Mice , Mice, Inbred C57BL , Receptors, Adrenergic, beta-3/genetics
14.
J Neuroimmune Pharmacol ; 19(1): 32, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886254

ABSTRACT

With the increasing resistance of Acinetobacter baumannii (A. baumannii) to antibiotics, researchers have turned their attention to the development of new antimicrobial agents. Among them, coumarin-based heterocycles have attracted much attention due to their unique biological activities, especially in the field of antibacterial infection. In this study, a series of coumarin derivatives were synthesized and screened for their bactericidal activities (Ren et al. 2018; Salehian et al. 2021). The inhibitory activities of these compounds on bacterial strains were evaluated, and the related mechanism of the new compounds was explored. Firstly, the MIC values and bacterial growth curves were measured after compound treatment to evaluate the antibacterial activity in vitro. Then, the in vivo antibacterial activities of the new compounds were assessed on A. baumannii-infected mice by determining the mice survival rates, counting bacterial CFU numbers, measuring inflammatory cytokine levels, and histopathology analysis. In addition, the ROS levels in the bacterial cells were measured with DCFH-DA detection kit. Furthermore, the potential target and detailed mechanism of the new compounds during infection disease therapy were predicted and evidenced with molecular docking. After that, ADMET characteristic prediction was completed, and novel, synthesizable, drug-effective molecules were optimized with reinforcement learning study based on the probed compound as a training template. The interaction between the selected structures and target proteins was further evidenced with molecular docking. This series of innovative studies provides important theoretical and experimental data for the development of new anti-A. baumannii infection drugs.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Coumarins , High-Throughput Screening Assays , Microbial Sensitivity Tests , Animals , Acinetobacter baumannii/drug effects , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/therapeutic use , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/therapeutic use , Acinetobacter Infections/drug therapy , High-Throughput Screening Assays/methods , Molecular Docking Simulation , Male , Mice, Inbred BALB C , Female
15.
Bioact Mater ; 32: 488-501, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37965241

ABSTRACT

Pulmonary fibrosis (PF) is a devastating lung disease with limited treatment options. During this pathological process, the profibrogenic macrophage subpopulation plays a crucial role, making the characterization of this subpopulation fundamentally important. The present study revealed a positive correlation between pulmonary macrophages with higher mitochondrial mass (Mømitohigh) and fibrosis. Among the Mømitohigh subpopulation of CD206+ M2, characterized by higher expression of dynamin 1-like (Drp1), as determined by flow cytometry and RNA-seq analysis, a therapeutic intervention was developed using an exosome-based formula composed of pathfinder and therapeutics. A pathfinder exosome called "exosomeMMP19 (ExoMMP19)", was constructed to display matrix metalloproteinase-19 (MMP19) on the surface to locally break down the excessive extracellular matrix (ECM) in the fibrotic lung. A therapeutic exosome called "exosome therapeutics (ExoTx)", was engineered to display D-mannose on the surface while encapsulating siDrp1 inside. Prior delivery of ExoMMP19 degraded excessive ECM and thus paved the way for ExoTx to be delivered into Mømitohigh, where ExoTx inhibited mitochondrial fission and alleviated PF. This study has not only identified Mømitohigh as profibrotic macrophages but it has also provided a potent strategy to reverse PF via a combination of formulated exosomes.

16.
Front Pharmacol ; 14: 1104403, 2023.
Article in English | MEDLINE | ID: mdl-36755947

ABSTRACT

Objective: Leonurine is a bioactive alkaloid compound extracted from Leonurus japonicus Houtt, which potentially has immunomodulatory effects. The immunomodulatory effect and mechanism of leonurine on monocyte derived dendritic cells (moDCs) from healthy donors (HDs) and multiple myeloma (MM) patients were investigated for the first time. Methods: Peripheral blood from HDs and MM patients was isolated for peripheral blood mononuclear cells (PBMCs). The generation of moDCs was conducted by the incubation of monocytes from PBMCs in the medium consisting of RPMI 1640 medium, 2 mmol/L L-glutamine, 5% human serum, 800 U/mL GM-CSF, 500 U/mL IL-4, 100 U/mL penicillin and 0.1 mg/mL streptomycin. During the incubation of 7 days, the cells were administrated with 1 µM leonurine or 1 × PBS as the control group. On the 8th day, cells were harvested. The expression of maturation associated surface markers CD40, CD83, and HLA-DR on moDCs was analyzed by flow cytometry. Moreover, moDCs with or without 1 µM leonurine administration were evaluated by LC-MS/MS for metabolomics which was further analyzed for the potential mechanism of leonurine on moDCs. Results: The proportion of moDCs in the harvested cells was significantly higher in the HD group (n = 14) than in the MM patient group (n = 11) (p = 0.000). Leonurine significantly enhanced the median fluorescence intensity of CD83, HLA-DR and CD40 expression on HD-moDCs (n = 14; p = 0.042, p = 0.013, p = 0.084) as well as MM paitent-moDCs (n = 11; p = 0.020, p = 0.006, p = 0.025). The metabolomics data showed that in moDCs (HD, n = 15), 18 metabolites in the pathway of arachidonic acid metabolism showed significant differences between the leonurine group and the control group (VIP all >1 and P all <0.05). To be specific, 6-Keto-PGE1, 8,9-DHET, 11 (R)-HETE, 12-Keto-LTB4, 12-OxoETE, 15 (S)-HETE, 15-Deoxy-Delta12,14-PGJ2, 15-Keto-PGF2a, 20-COOH-LTB4, Lecithin, PGA2, PGB2, PGE2, PGF2a, PGG2, Prostacyclin were significantly upregulated in the leonurine group than in the control group, while Arachidonic Acid and TXB2 were significantly downregulated in the leonurine group than in the control group. Conclusion: Leonurine significantly promotes the maturation of moDCs derived from HDs and MM patients, the mechanism of which is related to arachidonic acid metabolism.

17.
JMIR Med Inform ; 11: e47833, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37983072

ABSTRACT

BACKGROUND: Machine learning (ML) models provide more choices to patients with diabetes mellitus (DM) to more properly manage blood glucose (BG) levels. However, because of numerous types of ML algorithms, choosing an appropriate model is vitally important. OBJECTIVE: In a systematic review and network meta-analysis, this study aimed to comprehensively assess the performance of ML models in predicting BG levels. In addition, we assessed ML models used to detect and predict adverse BG (hypoglycemia) events by calculating pooled estimates of sensitivity and specificity. METHODS: PubMed, Embase, Web of Science, and Institute of Electrical and Electronics Engineers Explore databases were systematically searched for studies on predicting BG levels and predicting or detecting adverse BG events using ML models, from inception to November 2022. Studies that assessed the performance of different ML models in predicting or detecting BG levels or adverse BG events of patients with DM were included. Studies with no derivation or performance metrics of ML models were excluded. The Quality Assessment of Diagnostic Accuracy Studies tool was applied to assess the quality of included studies. Primary outcomes were the relative ranking of ML models for predicting BG levels in different prediction horizons (PHs) and pooled estimates of the sensitivity and specificity of ML models in detecting or predicting adverse BG events. RESULTS: In total, 46 eligible studies were included for meta-analysis. Regarding ML models for predicting BG levels, the means of the absolute root mean square error (RMSE) in a PH of 15, 30, 45, and 60 minutes were 18.88 (SD 19.71), 21.40 (SD 12.56), 21.27 (SD 5.17), and 30.01 (SD 7.23) mg/dL, respectively. The neural network model (NNM) showed the highest relative performance in different PHs. Furthermore, the pooled estimates of the positive likelihood ratio and the negative likelihood ratio of ML models were 8.3 (95% CI 5.7-12.0) and 0.31 (95% CI 0.22-0.44), respectively, for predicting hypoglycemia and 2.4 (95% CI 1.6-3.7) and 0.37 (95% CI 0.29-0.46), respectively, for detecting hypoglycemia. CONCLUSIONS: Statistically significant high heterogeneity was detected in all subgroups, with different sources of heterogeneity. For predicting precise BG levels, the RMSE increases with a rise in the PH, and the NNM shows the highest relative performance among all the ML models. Meanwhile, current ML models have sufficient ability to predict adverse BG events, while their ability to detect adverse BG events needs to be enhanced. TRIAL REGISTRATION: PROSPERO CRD42022375250; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=375250.

18.
Nutrients ; 16(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38201876

ABSTRACT

BACKGROUND: Numerous observational studies have documented an association between the circadian rhythm and the composition of the gut microbiota. However, the bidirectional causal effect of the morning chronotype on the gut microbiota is unknown. METHODS: A two-sample Mendelian randomization study was performed, using the summary statistics of the morning chronotype from the European Consortium and those of the gut microbiota from the largest available genome-wide association study meta-analysis, conducted by the MiBioGen consortium. The inverse variance-weighted (IVW), weighted mode, weighted median, MR-Egger regression, and simple mode methods were used to examine the causal association between the morning chronotype and the gut microbiota. A reverse Mendelian randomization analysis was conducted on the gut microbiota, which was identified as causally linked to the morning chronotype in the initial Mendelian randomization analysis. Cochran's Q statistics were employed to assess the heterogeneity of the instrumental variables. RESULTS: Inverse variance-weighted estimates suggested that the morning chronotype had a protective effect on Family Bacteroidaceae (ß = -0.072; 95% CI: -0.143, -0.001; p = 0.047), Genus Parabacteroides (ß = -0.112; 95% CI: -0.184, -0.039; p = 0.002), and Genus Bacteroides (ß = -0.072; 95% CI: -0.143, -0.001; p = 0.047). In addition, the gut microbiota (Family Bacteroidaceae (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047), Genus Parabacteroides (OR = 0.915; 95% CI: 0.858, 0.975; p = 0.007), and Genus Bacteroides (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047)) demonstrated positive effects on the morning chronotype. No significant heterogeneity in the instrumental variables, or in horizontal pleiotropy, was found. CONCLUSION: This two-sample Mendelian randomization study found that Family Bacteroidaceae, Genus Parabacteroides, and Genus Bacteroides were causally associated with the morning chronotype. Further randomized controlled trials are needed to clarify the effects of the gut microbiota on the morning chronotype, as well as their specific protective mechanisms.


Subject(s)
Chronotype , Gastrointestinal Microbiome , Bacteroides , Bacteroidetes , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis
19.
J Mater Chem B ; 10(39): 8100, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36193693

ABSTRACT

Correction for 'A self-activated cascade nanoreactor based on Pd-Ru/GOx for bacterial infection treatment' by Tianbao Zhu et al., J. Mater. Chem. B, 2022, https://doi.org/10.1039/d2tb01416e.

20.
Front Pharmacol ; 13: 1076096, 2022.
Article in English | MEDLINE | ID: mdl-36545316

ABSTRACT

Objective: To explore the effect of pomalidomide on the maturation of monocyte-derived dendritic cells (moDCs) from healthy donors (HDs) and multiple myeloma (MM) patients. Methods: MoDCs were generated by the incubation of monocytes from peripheral blood mononuclear cells (PBMCs) for 7 days in a medium consisting of 800 U/ml granulocyte-macrophage colony stimulating factor (GM-CSF), 500 U/ml interleukin-4 (IL-4), RPMI 1,640 medium, 5% human serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin. Meanwhile, the incubation system was administrated with 10 µM pomalidomide or 1 × PBS as the control group. On the eighth day, cells were harvested and analyzed by flow cytometry. The CD80+CD86+ cell population in total cells was gated as moDCs in the FACS analyzing system. After that, the expression of CD40 and HLA-DR on moDCs was analyzed. Meanwhile, the supernatant from the incubation system was evaluated for the secretion of cytokines interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein 1α (MIP-1α) by enzyme-linked immunosorbent assay (ELISA). Results: When analyzing all the HD-moDCs together (n = 15), pomalidomide significantly increased the mean fluorescence intensity (MFI) of CD40 expression and HLA-DR expression on moDCs compared with the control group (p = 0.003, p = 0.040). Meanwhile, the proportion of CD40+ moDCs and HLA-DR+ moDCs in total moDCs was significantly higher in the pomalidomide group than in the control group (p = 0.008, p = 0.032). When analyzing all MM patient-moDCs together (n = 11), pomalidomide significantly increased the MFI of CD40 expression and HLA-DR expression on moDCs compared with the control group (p = 0.047, p = 0.006). Meanwhile, the proportion of HLA-DR+ moDCs in total DCs was significantly higher in the pomalidomide group than in the control group (p < 0.001). Moreover, HD-moDCs (n = 8) treated with pomalidomide secreted 192% IL-12, 110% TNF-α, and 112% MIP-1α of the untreated moDCs (p = 0.020, p = 0.006, p = 0.055). However, when analyzing MM patient-moDCs (n = 10) together, the secretion of IL-12, TNF-α and MIP-1α from moDCs showed no significant difference between the pomalidomide group and the control group (p = 0.458, p = 0.377, p = 0.248). Conclusion: In vitro, 10 µM pomalidomide enhances the maturation of moDCs derived from both HDs and MM patients. Pomalidomide shows potential to be applied as a DC adjuvant for DC-based immunotherapy, such as the DC vaccine and DC cell therapy in MM.

SELECTION OF CITATIONS
SEARCH DETAIL