Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Environ Res ; 248: 118400, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38309568

ABSTRACT

While many studies have found positive correlations between greenness and human health, rural Central Appalachia is an exception. The region has high greenness levels but poor health. The purpose of this commentary is to provide a possible explanation for this paradox: three sets of factors overwhelming or attenuating the health benefits of greenness. These include environmental (e.g., steep typography and limited access to green space used for outdoor recreation), social (e.g., chronic poverty, declining coal industry, and limited access to healthcare), and psychological and behavioral factors (e.g., perceptions about health behaviors, healthcare, and greenness). The influence of these factors on the expected health benefits of greenness should be considered as working hypotheses for future research. Policymakers and public health officials need to ensure that greenness-based interventions account for contextual factors and other determinants of health to ensure these interventions have the expected health benefits.


Subject(s)
Poverty , Public Health , Humans , Appalachian Region , Rural Population
2.
Am J Public Health ; 113(7): 768-777, 2023 07.
Article in English | MEDLINE | ID: mdl-37200600

ABSTRACT

Objectives. To evaluate community-wide prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using stratified simple random sampling. Methods. We obtained data for the prevalence of SARS-CoV-2 in Jefferson County, Kentucky, from adult random (n = 7296) and volunteer (n = 7919) sampling over 8 waves from June 2020 through August 2021. We compared results with administratively reported rates of COVID-19. Results. Randomized and volunteer samples produced equivalent prevalence estimates (P < .001), which exceeded the administratively reported rates of prevalence. Differences between them decreased as time passed, likely because of seroprevalence temporal detection limitations. Conclusions. Structured targeted sampling for seropositivity against SARS-CoV-2, randomized or voluntary, provided better estimates of prevalence than administrative estimates based on incident disease. A low response rate to stratified simple random sampling may produce quantified disease prevalence estimates similar to a volunteer sample. Public Health Implications. Randomized targeted and invited sampling approaches provided better estimates of disease prevalence than administratively reported data. Cost and time permitting, targeted sampling is a superior modality for estimating community-wide prevalence of infectious disease, especially among Black individuals and those living in disadvantaged neighborhoods. (Am J Public Health. 2023;113(7):768-777. https://doi.org/10.2105/AJPH.2023.307303).


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , Prevalence , Seroepidemiologic Studies , Research Design
3.
Am J Physiol Heart Circ Physiol ; 320(3): H1102-H1111, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33416460

ABSTRACT

Residential proximity to greenness is associated with a lower risk of cardiovascular disease (CVD) and all-cause mortality. However, it is unclear whether the beneficial effects of greenness are linked to a reduction in the effects of ambient air pollutants. We measured arterial stiffness in 73 participants with moderate to high CVD risk. Average levels of ambient PM2.5 and ozone were calculated from local monitoring stations. Residential greenness was estimated using satellite-derived normalized difference vegetation index (NDVI) for a 200-m and 1-km radius around each participant's home. Participants were 51% female, average age of 52 yr, and 79% had diagnosed hypertension. In multiple linear regression models, residential NDVI was negatively associated with augmentation index (-3.8% per 0.1 NDVI). Ambient levels of PM2.5 [per interquartile range (IQR) of 6.9 µg/m3] were positively associated with augmentation pressure (3.1 mmHg), pulse pressure (5.9 mmHg), and aortic systolic pressure (8.1 mmHg). Ozone (per IQR of 0.03 ppm) was positively associated with augmentation index (5.5%), augmentation pressure (3.1 mmHg), and aortic systolic pressure (10 mmHg). In areas of low greenness, both PM2.5 and ozone were positively associated with pulse pressure. Additionally, ozone was positively associated with augmentation pressure and systolic blood pressure. However, in areas of high greenness, there was no significant association between indices of arterial stiffness with either PM2.5 or ozone. Residential proximity to greenness is associated with lower values of arterial stiffness. Residential greenness may mitigate the adverse effects of PM2.5 and ozone on arterial stiffness.NEW & NOTEWORTHY Previous studies have linked proximity to green spaces with lower cardiovascular disease risk. However, the mechanisms underlying the salutary effects of green areas are not known. In our study of participants at risk of cardiovascular disease, we found that arterial stiffness was positively associated with short-term exposure to PM2.5, PM10, and ozone and inversely associated with greenness. The association between pollution and arterial stiffness was attenuated in areas of high greenness, suggesting that living green neighborhoods can lessen the adverse cardiovascular effects of air pollution.


Subject(s)
Air Pollutants/adverse effects , Air Pollution/adverse effects , Cardiovascular Diseases/prevention & control , Environmental Exposure/adverse effects , Hemodynamics , Urban Health , Urbanization , Vascular Stiffness , Adult , Aged , Aged, 80 and over , Arterial Pressure , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , City Planning , Female , Humans , Kentucky , Male , Middle Aged , Ozone/adverse effects , Particulate Matter/adverse effects , Protective Factors , Residence Characteristics , Risk Assessment , Risk Factors , Young Adult
5.
Circ Res ; 122(9): 1259-1275, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29700071

ABSTRACT

Both genetic and environmental factors contribute to the development of cardiovascular disease, but in comparison with genetics, environmental factors have received less attention. Evaluation of environmental determinants of cardiovascular disease is limited by the lack of comprehensive omics approaches for integrating multiple environmental exposures. Hence, to understand the effects of the environment as a whole (envirome), it is important to delineate specific domains of the environment and to assess how, individually and collectively; these domains affect cardiovascular health. In this review, we present a hierarchical model of the envirome; defined by 3 consecutively nested domains, consisting of natural, social, and personal environments. Extensive evidence suggests that features of the natural environment such as sunlight, altitude, diurnal rhythms, vegetation, and biodiversity affect cardiovascular health. However, the effects of the natural environment are moderated by the social environment comprised of built environments, agricultural and industrial activities, pollutants and contaminants, as well as culture, economic activities, and social networks that affect health by influencing access to healthcare, social cohesion, and socioeconomic status. From resources available within society, individuals create personal environments, characterized by private income, wealth and education, and populated by behavioral and lifestyle choices relating to nutrition, physical activity, sleep, the use of recreational drugs, and smoking. An understanding of the interactions between different domains of the envirome and their integrated effects on cardiovascular health could lead to the development of new prevention strategies and deeper insights into etiologic processes that contribute to cardiovascular disease risk and susceptibility.


Subject(s)
Cardiovascular Diseases/etiology , Environment , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Environmental Exposure , Gene-Environment Interaction , Genetic Predisposition to Disease , Health Behavior , Humans , Life Style , Models, Cardiovascular , Primary Prevention/methods , Risk , Risk Management , Social Environment
6.
Environ Res ; 180: 108890, 2020 01.
Article in English | MEDLINE | ID: mdl-31718786

ABSTRACT

Epidemiological evidence suggests that exposure to air pollution is a leading risk factor for cardiovascular disease (CVD). However, there is little direct evidence linking exposure to vascular dysfunction. We conducted a cross-sectional study of 100 participants, recruited from the University of Louisville Clinics. Endothelial function was assessed by calculating the reactive hyperemia index (RHI). Oxidative stress was indexed by measuring urinary levels of isoprostanes (n = 91). Inflammatory biomarkers were measured in the plasma (n = 80). Daily average PM2.5 levels were obtained from regional monitoring stations. Adjusted associations between PM2.5 levels and measured outcomes were tested using generalized linear models. The average age of participants was 48 years (44% male, 62% white); 52% had a diagnosis of hypertension, and 44% had type-2 diabetes. A 12.4% decrease in RHI was associated with 10 µg/m3 increase in PM2.5 (95% CI: 21.0, -2.7). The F-2 isoprostane metabolite showed a positive association of 28.4% (95% CI: 2.7, 60.3) per 10 µg/m3 increase in PM2.5. Positive associations were observed with angiopoietin 1 (17.4%; 95% CI: 2.8, 33.8), vascular endothelial growth factor (10.4%; 95% CI: 0.6, 21.0), placental growth factor (31.7%; 95% CI: 12.2, 54.5), intracellular adhesion molecule-1 (24.6%; 95% CI: 1.6, 52.8), and matrix metalloproteinase-9 (30.3%; 95% CI: 8.0, 57.5) per 10 µg/m3 increase in PM2.5. Additionally, a 10 µg/m3 increase in PM2.5 was associated with 15.9% decrease in vascular cell adhesion molecule-1 (95% CI: 28.3, -1.3). These findings suggest that exposure to PM2.5 is associated with impaired vascular function, which may result from oxidative stress and inflammation, thereby leading to a pro-atherogenic state.


Subject(s)
Air Pollutants , Air Pollution , Inflammation , Oxidative Stress , Particulate Matter , Air Pollutants/toxicity , Biomarkers , Cross-Sectional Studies , Environmental Exposure , Female , Humans , Male , Middle Aged , Particulate Matter/toxicity , Placenta Growth Factor , Vascular Endothelial Growth Factor A
7.
Inhal Toxicol ; 32(13-14): 468-476, 2020.
Article in English | MEDLINE | ID: mdl-33179563

ABSTRACT

OBJECTIVE: The inhalation of air-borne toxicants is associated with adverse health outcomes which can be somewhat mitigated by enhancing endogenous anti-oxidant capacity. Carnosine is a naturally occurring dipeptide (ß-alanine-L-histidine), present in high abundance in skeletal and cardiac muscle. This multi-functional dipeptide has anti-oxidant properties, can buffer intracellular pH, chelate metals, and sequester aldehydes such as acrolein. Due to these chemical properties, carnosine may be protective against inhaled pollutants which can contain metals and aldehydes and can stimulate the generation of electrophiles in exposed tissues. Thus, assessment of carnosine levels, or levels of its acrolein conjugates (carnosine-propanal and carnosine-propanol) may inform on level of exposure and risk assessment. METHODS: We used established mass spectroscopy methods to measure levels of urinary carnosine (n = 605) and its conjugates with acrolein (n = 561) in a subset of participants in the Louisville Healthy Heart Study (mean age = 51 ± 10; 52% male). We then determined associations between these measures and air pollution exposure and smoking behavior using statistical modeling approaches. RESULTS: We found that higher levels of non-conjugated carnosine, carnosine-propanal, and carnosine-propanol were significantly associated with males (p < 0.02) and those of Caucasian ethnicity (p < 0.02). Levels of carnosine-propanol were significantly higher in never-smokers (p = 0.001) but lower in current smokers (p = 0.037). This conjugate also demonstrated a negative association with mean-daily particulate air pollution (PM2.5) levels (p = 0.01). CONCLUSIONS: These findings suggest that urinary levels of carnosine-propanol may inform as to risk from inhaled pollutants.


Subject(s)
Aldehydes/urine , Carnosine/urine , Inhalation Exposure , Smoking/urine , 1-Propanol/urine , Adult , Air Pollutants/pharmacokinetics , Aldehydes/pharmacokinetics , Biological Monitoring , Female , Humans , Male , Middle Aged , Smoking/metabolism
8.
J Pediatr ; 172: 35-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26947949

ABSTRACT

OBJECTIVE: To evaluate factors affecting attendance or nonattendance at an initial interprofessional pediatric weight management visit after referral. We hypothesized that increased severity of obesity, farther distance from the program, lower education level of the primary caregiver, public insurance or no insurance, and lower socioeconomic status would all decrease likelihood of attending initial visit after referral. STUDY DESIGN: We examined referral and visit data over 4 years and 5 months. We used geocoding and multivariable logistic regression to analyze links between attendance and demographic factors, baseline body mass index, insurance type, and distance from patients' homes to the program site. RESULTS: Over the study period, 41.2% of the 4783 children referred to the pediatric weight management clinic attended at least 1 visit. A total of 4086 children were included in the full analyses. Factors associated with attendance were female sex, higher body mass index severity class, private health insurance, residence in areas with higher median income, and residence in areas with a higher prevalence of high school completion. CONCLUSIONS: The current project expands our understanding of factors linked to children's attendance at an initial pediatric weight management visit. Despite limitations including missing data, results have important implications for pediatric weight management clinics, referring providers, and policymakers to target populations with low attendance and optimize use of these evidence-based programs.


Subject(s)
Health Behavior , Patient Compliance , Pediatric Obesity/therapy , Referral and Consultation/statistics & numerical data , Weight Reduction Programs/statistics & numerical data , Adolescent , Child , Female , Humans , Logistic Models , Male , Risk Factors
9.
Arterioscler Thromb Vasc Biol ; 35(11): 2468-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26293462

ABSTRACT

OBJECTIVES: Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease risk. Yet, the nature of this association remains unclear, and its effect on individual cardiovascular disease risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells. APPROACH AND RESULTS: In a cross-sectional study, cardiovascular disease risk factors, blood levels of C-reactive protein, and 15 antigenically defined circulating angiogenic cell populations were measured in participants (n=316) with moderate-to-high cardiovascular disease risk. Attributes of roadways surrounding residential locations were assessed using geographic information systems. Associations between road proximity and cardiovascular indices were analyzed using generalized linear models. Close proximity (<50 m) to a major roadway was associated with lower income and higher rates of smoking but not C-reactive protein levels. After adjustment for potential confounders, the levels of circulating angiogenic cells in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31(+)/AC133(+), AC133(+), CD34(+)/AC133(+), and CD34(+)/45(dim)/AC133(+) cells) and positively associated with road segment distance (CD31(+)/AC133(+), AC133(+), and CD34(+)/AC133(+) cells), traffic intensity (CD31(+)/AC133(+) and AC133(+) cells), and distance-weighted traffic intensity (CD31(+)/34(+)/45(+)/AC133(+) cells). CONCLUSIONS: Living close to a major roadway is associated with elevated levels of circulating cells positive for the early stem marker AC133(+). This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury because of residential proximity to roadways.


Subject(s)
Antigens, CD/blood , Automobiles , Endothelial Progenitor Cells/drug effects , Environmental Exposure/adverse effects , Environmental Pollutants/adverse effects , Glycoproteins/blood , Inflammation Mediators/blood , Peptides/blood , Residence Characteristics , Vehicle Emissions , AC133 Antigen , Adult , Biomarkers/blood , Cell Count , Cross-Sectional Studies , Endothelial Progenitor Cells/immunology , Endothelial Progenitor Cells/metabolism , Female , Humans , Kentucky , Male , Middle Aged , Up-Regulation
10.
Sci Total Environ ; 946: 173788, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901580

ABSTRACT

INTRODUCTION: Previous investigations have reported that individuals living in greener neighborhoods have better cardiovascular health. It is unclear whether the effects reported at large geographic scales persist when examined at an intra-neighborhood level. The effects of greenness have not been thoroughly examined using high-resolution metrics of greenness exposure, and how they vary with spatial scales of assessment or participant characteristics. METHODS: We conducted a cross-sectional assessment of associations between blood pressure and multiple high-resolution measures of residential area greenness in spatially concentrated HEAL Study cohort of the Green Heart Project. We employed generalized linear models, accounting for individual-level covariates, to examine associations between different high-resolution measures of greenness and blood pressure among 667 participants in a 4 sq. mile contiguous neighborhood area in Louisville, KY. RESULTS: In adjusted models, we observed significant inverse associations between residential greenness, measured by leaf area index (LAI), and systolic blood pressure (SBP) within 150-250 m and 500 m of homes, but not for Normalized Difference Vegetation Index (NDVI) or grass cover. Weaker associations were also found with diastolic blood pressure (DBP). Significant positive associations were observed between LAI and SBP among participants who reported being female, White, without obesity, non-exercisers, non-smokers, younger age, of lower income, and who had high nearby roadway traffic. We found few significant associations between grass cover and SBP, but an inverse association in those with obesity, but positive associations for those without obesity. CONCLUSIONS: We found that leaf surface area of trees around participants home is strongly associated with lower blood pressure, with little association with grass cover. These effects varied with participant characteristics and spatial scales. More research is needed to test causative links between greenspace types and cardiovascular health and to develop population-, typology-, and place-based evidence to inform greening interventions.

11.
Environ Int ; 176: 107955, 2023 06.
Article in English | MEDLINE | ID: mdl-37196566

ABSTRACT

Associations between neighborhood greenness and socioeconomic status (SES) are established, yet intra-neighborhood context and SES-related barriers to tree planting remain unclear. Large-scale tree planting implementation efforts are increasingly common and can improve human health, strengthen climate adaptation, and ameliorate environmental inequities. Yet, these efforts may be ineffective without in-depth understanding of local SES inequities and barriers to residential planting. We recruited 636 residents within and surrounding the Oakdale Neighborhood of Louisville, Kentucky, USA, and evaluated associations of individual and neighborhood-level sociodemographic indicators with greenness levels at multiple scales. We offered no-cost residential tree planting and maintenance to residents within a subsection of the neighborhood and examined associations of these sociodemographic indicators plus baseline greenness levels with tree planting adoption among 215 eligible participants. We observed positive associations of income with Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) within all radii around homes, and within yards of residents, that varied in strength. There were stronger associations of income with NDVI in front yards but LAI in back yards. Among Participants of Color, associations between income and NDVI were stronger than with Whites and exhibited no association with LAI. Tree planting uptake was not associated with income, education, race, nor employment status, but was positively associated with lot size, home value, lower population density, and area greenness. Our findings reveal significant complexity of intra-neighborhood associations between SES and greenness that could help shape future research and equitable greening implementation. Results show that previously documented links between SES and greenspace at large scales extend to residents' yards, highlighting opportunities to redress greenness inequities on private property. Our analysis found that uptake of no-cost residential planting and maintenance was nearly equal across SES groups but did not redress greenness inequity. To inform equitable greening, further research is needed to evaluate culture, norms, perceptions, and values affecting tree planting acceptance among low-SES residents.


Subject(s)
Social Class , Trees , Humans , Plants , Residence Characteristics , Income
12.
medRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38105951

ABSTRACT

The Green Heart Project is a community-based trial to evaluate the effects of increasing greenery on urban environment and community health. The study was initiated in 2018 in a low-to-middle-income mixed-race residential area of nearly 28,000 residents in Louisville, KY. The 4 square mile area was surveyed for land use, population characteristics, and greenness, and assigned to 8 paired clusters of demographically- and environmentally matched "target" (T) and adjacent "control" (C), clusters. Ambient levels of ultrafine particles, ozone, oxides of nitrogen, and environmental noise were measured in each cluster. Individual-level data were acquired during in-person exams of 735 participants in Wave 1 (2018-2019) and 545 participants in Wave 2 (2021) to evaluate sociodemographic and psychosocial factors. Blood, urine, nail, and hair samples were collected to evaluate standard cardiovascular risk factors, inflammation, stress, and pollutant exposure. Cardiovascular function was assessed by measuring arterial stiffness and flow-mediated dilation. After completion of Wave 2, more than 8,000 mature, mostly evergreen, trees and shrubs were planted in the T clusters in 2022. Post planting environmental and individual-level data were collected during Wave 3 (2022) from 561 participants. We plan to continue following changes in area characteristics and participant health to evaluate the long-term impact of increasing urban greenery.

13.
Sleep Health ; 9(3): 253-263, 2023 06.
Article in English | MEDLINE | ID: mdl-37076419

ABSTRACT

OBJECTIVE: Climate change and urbanization increasingly cause extreme conditions hazardous to health. The bedroom environment plays a key role for high-quality sleep. Studies objectively assessing multiple descriptors of the bedroom environment as well as sleep are scarce. METHODS: Particulate matter with a particle size <2.5 µm (PM2.5), temperature, humidity, carbon dioxide (CO2), barometric pressure, and noise levels were continuously measured for 14 consecutive days in the bedroom of 62 participants (62.9% female, mean ± SD age: 47.7 ± 13.2 years) who wore a wrist actigraph and completed daily morning surveys and sleep logs. RESULTS: In a hierarchical mixed effect model that included all environmental variables and adjusted for elapsed sleep time and multiple demographic and behavioral variables, sleep efficiency calculated for consecutive 1-hour periods decreased in a dose-dependent manner with increasing levels of PM2.5, temperature, CO2, and noise. Sleep efficiency in the highest exposure quintiles was 3.2% (PM2.5, p < .05), 3.4% (temperature, p < .05), 4.0% (CO2, p < .01), and 4.7% (noise, p < .0001) lower compared to the lowest exposure quintiles (all p-values adjusted for multiple testing). Barometric pressure and humidity were not associated with sleep efficiency. Bedroom humidity was associated with subjectively assessed sleepiness and poor sleep quality (both p < .05), but otherwise environmental variables were not statistically significantly associated with actigraphically assessed total sleep time and wake after sleep onset or with subjectively assessed sleep onset latency, sleep quality, and sleepiness. Assessments of bedroom comfort suggest subjective habituation irrespective of exposure levels. CONCLUSIONS: These findings add to a growing body of evidence highlighting the importance of the bedroom environment-beyond the mattress-for high-quality sleep.


Subject(s)
Actigraphy , Carbon Dioxide , Humans , Female , Adult , Middle Aged , Male , Temperature , Carbon Dioxide/analysis , Humidity , Sleepiness , Sleep , Particulate Matter/analysis , Surveys and Questionnaires
14.
Sci Total Environ ; 824: 153848, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35176374

ABSTRACT

Several cohort studies suggest greenness is associated with decreased mortality risk. Potential confounding by or interactions between physical activity and air pollution remains unclear. This study evaluates associations of greenness, air pollution, and physical activity with mortality risk and investigates confounding and effect modification across these key risk factors. National Health Interview Survey (NHIS) data covering 1997-2014 were linked to the National Death Index to generate a cohort of 403,748 individuals with 39,528 deaths. Greenness, represented by census-tract Normalized Difference Vegetation Index (NDVI) for the seasonal period of May-October, was averaged over the years 2003-2016. Air pollution was estimated by census-tract level PM2.5 concentrations from 1999 to 2015. Cox Proportional Hazard Models were used to estimate hazard ratios (HR) for differences in greenness, air pollution, and physical activity. Alternative models that evaluated potential confounding and stratified models that evaluated effect modification were examined. Mortality risks were associated with PM2.5 (HR = 1.14, 95% CI: 1.09-1.19 per 10 µg/m3) and physical inactivity (1.49, 1.44-1.54 relative to sufficiently active), but not with greenness (1.01, 0.99-1.03 per IQR). The PM2.5-mortality association was mitigated at high levels of greenness (1.05, 0.91-1.22). There was no strong evidence of confounding between air pollution, physical activity, and greenness. However, stratified analysis suggested effect modification for PM2.5 and NDVI by physical activity. A significant protective greenness-mortality association was observed for only highly active individuals (0.91, 0.86-0.96). Also, relatively high PM2.5-mortality HRs were observed for more physically active individuals (1.25, 1.12-1.40). PM2.5 air pollution and physical inactivity are robustly associated with mortality risk. Greenness may be most beneficial and air pollution relatively harmful to highly active individuals. This analysis provides evidence that, in addition to not smoking, being physically active and living in a clean, green environment contributes to improved health and reduced risk of mortality.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cohort Studies , Environmental Exposure/analysis , Exercise , Humans , Particulate Matter/analysis
15.
Article in English | MEDLINE | ID: mdl-36498387

ABSTRACT

Exposure to greenness has been studied through objective measures of remote visualization of greenspace; however, the link to how individuals interpret spaces as green is missing. We examined the associations between three objective greenspace measures with perceptions of greenness. We used a subsample (n = 175; 2018-2019) from an environmental cardiovascular risk cohort to investigate perceptions of residential greenness. Participants completed a 17-item survey electronically. Objective measurements of greenness within 300 m buffer around participants home included normalized difference vegetation index (NDVI), tree canopy and leaf area index. Principal component analysis reduced the perceived greenspaces to three dimensions reflecting natural vegetation, tree cover and built greenspace such as parks. Our results suggest significant positive associations between NDVI, tree canopy and leaf area and perceived greenness reflecting playgrounds; also, associations between tree canopy and perceived greenness reflecting tree cover. These findings indicate that the most used objective greenness measure, NDVI, as well as tree canopy and leaf area may most align with perceptions of parks, whereas tree canopy alone captures individuals' perceptions of tree cover. This highlights the need for research to understand the complexity of green metrics and careful interpretation of data based on the use of subjective or objective measures of greenness.


Subject(s)
Parks, Recreational , Trees , Humans
16.
Emerg Microbes Infect ; 11(1): 1339-1342, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35475464

ABSTRACT

We describe the successful detection of human, porcine and canine picornaviruses (CanPV) in sewage sludge (at each stage of treatment) from Louisville, Kentucky, USA, using Pan-enterovirus amplicon-based long-read Illumina sequencing. Based on publicly available sequence data in GenBank, this is the first detection of CanPV in the USA and the first detection globally using wastewater-based epidemiology. Our findings also suggest there might be clusters of endemic porcine enterovirus (which have been shown capable of causing systemic infection in porcine) circulation in the USA that have not been sampled for around two decades. Our findings highlight the value of WBE coupled with amplicon based long-read Illumina sequencing for virus surveillance and demonstrates this approach can provide an avenue that supports a "One Health" model to virus surveillance. Finally, we describe a new CanPV assay targeting the capsid protein gene region that can be used globally, especially in resource limited settings for its detection and molecular epidemiology.


Subject(s)
Enterovirus Infections , Enterovirus , Picornaviridae , Animals , Antigens, Viral , Dogs , Enterovirus/genetics , High-Throughput Nucleotide Sequencing , Humans , Picornaviridae/genetics , Sewage , Swine
17.
Food Environ Virol ; 14(4): 410-416, 2022 12.
Article in English | MEDLINE | ID: mdl-35982363

ABSTRACT

This study aimed to develop a framework for combining community wastewater surveillance with state clinical surveillance for the confirmation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants within the community and to provide recommendations on how to expand on such research and apply the findings in public health responses. Wastewater samples were collected weekly from 17 geographically resolved locations in Louisville/Jefferson County, Kentucky (USA), from February 10 to December 13, 2021. Genomic surveillance and quantitative reverse transcription PCR (RT-qPCR) platforms were used to screen for SARS-CoV-2 in wastewater, and state clinical surveillance was used for confirmation. The study results highlighted an increased epidemiological value of combining community wastewater genomic surveillance and RT-qPCR with conventional case-auditing methods. The spatial scale and temporal frequency of wastewater sampling provided promising sensitivity and specificity for gaining public health screening insights about SARS-CoV-2 emergence, seeding, and spread in communities. Improved national surveillance systems are needed against future pathogens and variants, and wastewater-based genomic surveillance exhibits great potential when coupled with clinical testing. This paper presents evidence that complementary wastewater and clinical testing are cost-effectively enhanced when used in combination, as they provide a strong tool for a joint public health framework. Future pathogens of interest may be examined in either a targeted fashion or using a more global approach where all pathogens are monitored. This study has also provided novel insights developed from evidence-based public health practices.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring , Genomics , Public Health Practice
18.
Pathogens ; 11(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365000

ABSTRACT

Despite entering an endemic phase, SARS-CoV-2 remains a significant burden to public health across the global community. Wastewater sampling has consistently proven utility to understanding SARS-CoV-2 prevalence trends and genetic variation as it represents a less biased assessment of the corresponding communities. Here, we report that ongoing monitoring of SARS-CoV-2 genetic variation in samples obtained from the wastewatersheds of the city of Louisville in Jefferson county Kentucky has revealed the periodic reemergence of the Delta strain in the presence of the presumed dominant Omicron strain. Unlike previous SARS-CoV-2 waves/emergence events, the Delta reemergence events were geographically restricted in the community and failed to spread into other areas as determined by wastewater analyses. Moreover, the reemergence of the Delta strain did not correlate with vaccination rates as communities with lower relative vaccination have been, to date, not affected. Importantly, Delta reemergence events correlate with increased public health burdens, as indicated by increased daily case rates and mortality relative to non-Delta wastewatershed communities. While the underlying reasons for the reemergence of the Delta variant remain unclear, these data reaffirm the ongoing importance of wastewater genomic analyses towards understanding SARS-CoV-2 as it enters the endemic phase.

19.
Environ Int ; 157: 106797, 2021 12.
Article in English | MEDLINE | ID: mdl-34332301

ABSTRACT

BACKGROUND: Several studies suggest that living in areas of high surrounding greenness may be associated with a lower cardiopulmonary mortality risk. However, associations of greenness with specific causes of death in cancer patients and survivors has not been examined and it is unknown whether this relationship is affected by area levels of fine particulate matter air pollution (PM2.5). This study evaluated associations between greenness and PM2.5 on causes of death in a large, U.S.-based cohort of cancer patients and survivors. METHODS: Surveillance, Epidemiology and End Results (SEER) data were used to generate a cohort of 5,529,005 cancer patients and survivors from 2000 to 2016. Census-tract Normalized Difference Vegetation Index (NDVI) during May-October from 2003 to 2016 was population-weighted to act as a county-level greenness measure. County-level PM2.5 exposure was estimated from annual concentrations averaged from 1999 to 2015. Cox Proportional Hazards models were used to estimate the association between greenness, PM2.5, and cause-specific mortality while controlling for age, sex, race, and other individual and county level variables. FINDINGS: An IQR increase in greenness was associated with a decrease in cancer mortality for cancer patients (Hazard ratio of 0.94, 95% CI: 0.93-0.95), but not for cardiopulmonary mortality (0.98, 95% CI: 0.96-1.00). Inversely, an increase in 10 µg/m3 PM2.5 was associated with increased cardiopulmonary mortality (1.24, 95% CI: 1.19-1.29), but not cancer mortality (0.99, 95% CI: 0.97-1.00). Hazard ratios were robust to inclusion of PM2.5 in models with greenness and vice versa. Although exposure estimates were constant over most stratifications, greenness seemed to benefit individuals diagnosed with high survivability cancers (0.92, 95% CI: 0.90-0.95) more than those with low survivability cancers (0.98. 95% CI: 0.96-0.99). INTERPRETATION: Higher levels of greenness are associated with lower cancer mortality in cancer patients. The evidence suggests minimal confounding between greenness and PM2.5 exposures and risk of mortality.


Subject(s)
Air Pollutants , Air Pollution , Neoplasms , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Cohort Studies , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Humans , Particulate Matter/analysis , Survivors
20.
Popul Med ; 32021 Jul.
Article in English | MEDLINE | ID: mdl-34368779

ABSTRACT

INTRODUCTION: Exposure to green spaces is beneficial to mental health in a variety of ways, ranging from stress reduction to increased attentiveness and elevated self-esteem. The impact of views of greenness, as opposed to direct exposure, has been examined, but the association between self-reported views and depressive symptoms is not known. The purpose of this study is to examine the relationship between views of greenness and Patient Health Questionnaire-9 (PHQ-9) score. METHODS: Questionnaire responses from 191 participants in the Health, Environment, and Action in Louisville (HEAL) study were examined. Univariate statistical analyses included Mann-Whitney U, Kruskal-Wallis, and Spearman rank tests. Inferential statistical analysis was linear regression. RESULTS: Participant satisfaction with residential greenness was significantly associated with reduced PHQ-9 score (partially adjusted: linear coefficient = -0.42; 95% CI: -0.70 - -0.14; fully adjusted: linear coefficient = -0.21; 95% CI: -0.44 - 0.02). Additionally, being satisfied with local greenness was significantly associated with having views of greenness from home (linear coefficient = 1.97; 95% CI: 1.23-2.68). CONCLUSIONS: Though views of greenness were not directly associated with depression, satisfaction with local greenness was associated with reduced PHQ-9 score, and having views of greenness from home was crudely associated with increased greenness satisfaction. The findings suggest urban greening interventions that focus on greenness satisfaction may be a strategy to reduce depression. Further research is necessary to better understand these relationships.

SELECTION OF CITATIONS
SEARCH DETAIL