Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39074039

ABSTRACT

Plant immune regulation is complex. In addition to proteins, lipid molecules play critical roles in modulating immune responses. The mutant pi4kß1,2 is mutated in two phosphatidylinositol 4-kinases PI4Kß1 and ß2 involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P). The mutant displays autoimmunity, short roots, aberrant root hairs, and a heightened sensitivity to ER stress. In a forward genetic screen designed to dissect pi4kß1,2 autoimmunity, we found that Orosomucoid-like 1 (ORM1) is required for the phenotypes of pi4kß1,2, including short root and ER stress sensitivity. The orm1 mutations lead to increased long-chain base and ceramide levels in the suppressors. We also found that the basic region/leucine Zipper motif (bZIP) 28 and 60 transcription factors, central regulators of ER stress response, are required for its autoimmunity and root defect. In comparison, the defense-related phytohormones salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are required for its autoimmunity but plays a minor role in its root phenotypes. Further, we found that wild-type plants overexpressing ORM1 are autoimmune, displaying short roots and increased ceramide levels. The autoimmunity of the ORM1 overexpression lines is dependent on SA, NHP, and bZIP60. As ORM1 is a known negative regulator of sphingolipid biosynthesis, our study uncovers a balancing role between PIs and sphingolipids in regulating immunity and ER stress responses in pi4kß1,2.

SELECTION OF CITATIONS
SEARCH DETAIL