Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 269: 115780, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38056123

ABSTRACT

The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.


Subject(s)
Atrazine , Herbicides , Melatonin , Mitochondrial Diseases , Animals , Female , Atrazine/toxicity , Atrazine/metabolism , Granulosa Cells/metabolism , Herbicides/toxicity , Herbicides/metabolism , Melatonin/pharmacology , Mitochondrial Diseases/chemically induced , Reactive Oxygen Species/metabolism , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Steroids/metabolism , Quail/genetics , Quail/metabolism
2.
Ecotoxicol Environ Saf ; 259: 115056, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37229871

ABSTRACT

Cadmium (Cd) is widespread globally in the environment as a toxic metal. Although it is well known to induce hepatotoxicity in the cells, defense mechanisms against the detrimental effects of Cd are still unknown. We examined the role of autophagy (a cellular defense mechanism) on Cd-induced cytotoxicity in bird hepatocytes. Primary chicken hepatocytes were cultured with different concentrations (0, 1, 2.5, 5, and 10 µM) of cadmium chloride (CdCl2) for 12 h. We assessed the effects of CdCl2 on the cell viability, antioxidant status, reactive oxygen species (ROS) generation, autophagy response and endoplasmic reticulum (ER) stress. Further, it is also evaluated that insight into underling molecular mechanisms involved in the study. In this study, CdCl2-induce hepatotoxicity was caused by drastically increased ROS generation as well as a reduction level of antioxidant enzymes. It was also demonstrated that marked activation of ER stress markers (GRP78, IRE1, PERK, ATF4, ATF6 and XBP-1 s) was observed. Simultaneously, increased activation of autophagy in low-dose CdCl2 (1 µM) exposed group was observed, but high-dose CdCl2 (10 µM) inhibited autophagy and significantly promoted apoptosis, as indicated by the expression of the autophagy related genes for P62, Beclin-1, ATG3, ATG5, ATG9, and the detection of autophagic vacuoles. Pretreatment with autophagy agonist Rapamycin (RAP) has successfully reduced ROS production, attenuated ER stress and enhanced hepatocytes viability, while the autophagy inhibitor 3-Methyladenine (3-MA) had the opposite effect. Hence, these findings stipulate that Cd could inhibit viability of hepatocytes in a dose-dependent manner. Autophagy relieves hepatotoxicity of Cd via reducing ROS generation and regulating ER stress. We identified autophagy as a novel protective mechanism involved in Cd-mediated chicken hepatotoxicity.


Subject(s)
Cadmium , Chemical and Drug Induced Liver Injury , Animals , Cadmium/metabolism , Reactive Oxygen Species/metabolism , Chickens/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Hepatocytes , Oxidative Stress , Endoplasmic Reticulum Stress , Apoptosis , Autophagy , Chemical and Drug Induced Liver Injury/metabolism
3.
Ecotoxicol Environ Saf ; 268: 115716, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37992640

ABSTRACT

Due to the wide use of atrazine (ATR), the concern has increased regarding the negative impact of ATR on reproduction. Nevertheless, the reproductive effects caused by different exposure concentrations and the severity of toxic damage are poorly understood. In organisms, ATR is metabolized and degraded through phase II enzyme systems, and changes in cytochrome P450 (CYP) enzymes may have a regulatory role in the harm of ATR. However, less information is available on the induction of CYPs by ATR in avian organisms, and even less on its effects on the testis. Birds are exposed to ATR mainly through food residues and contaminated water, the purpose of this study was to examine reproductive toxicity by different exposure concentrations and elaborate metabolic disorders caused by ATR in European quail (Coturnix coturnix). In this study, the quail were given ATR at 50 mg/kg, 250 mg/kg and 500 mg/kg by oral gavage for 45 days, and the testicular weight coefficients, histopathology and ultrastructure of testes, primary biochemical functions, sex steroid hormones, critical protein levels in the testosterone synthesis pathway, the expression of genes involved CYPs, gonad axis and nuclear receptors expression were investigated. Altogether, testicular coefficient decreased significantly in the high-dose group (1.22%) compared with the control group (3.03%) after 45 days of ATR exposure, and ATR is a potent CYP disruptor that acts through the NXRs and steroid receptor subfamily (APND, CAR, ERND and ERα) without a dose-dependent manner. Notably, ATR interfered with the homeostasis of hormones by triggering the expression of hormones on the gonad axis (LH and E2). These results suggest that exposure to ATR can cause testicular toxicity involving accommodative disorder of phase II enzyme and testosterone synthesis in European quail.


Subject(s)
Atrazine , Male , Animals , Atrazine/toxicity , Atrazine/metabolism , Coturnix/metabolism , Testis/metabolism , Xenobiotics/metabolism , Quail/metabolism , Cytochrome P-450 Enzyme System/metabolism , Testosterone/metabolism
4.
J Agric Food Chem ; 72(26): 14956-14966, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38820047

ABSTRACT

Atrazine (ATR) is a widely used herbicide worldwide that can cause kidney damage in humans and animals by accumulation in water and soil. Lycopene (LYC), a carotenoid with numerous biological activities, plays an important role in kidney protection due to its potent antioxidant and anti-inflammatory effects. The current study sought to investigate the role of interactions between mtDNA and the cGAS-STING signaling pathway in LYC mitigating PANoptosis and inflammation in kidneys induced by ATR exposure. In our research, 350 mice were orally administered LYC (5 mg/kg BW/day) and ATR (50 or 200 mg/kg BW/day) for 21 days. Our results reveal that ATR exposure induces a decrease in mtDNA stability, resulting in the release of mtDNA into the cytoplasm through the mPTP pore and the BAX pore and the mobilization of the cGAS-STING pathway, thereby inducing renal PANoptosis and inflammation. LYC can inhibit the above changes caused by ATR. In conclusion, LYC inhibited ATR exposure-induced histopathological changes, renal PANoptosis, and inflammation by inhibiting the cGAS-STING pathway. Our results demonstrate the positive role of LYC in ATR-induced renal injury and provide a new therapeutic target for treating renal diseases in the clinic.


Subject(s)
Atrazine , DNA, Mitochondrial , Kidney , Lycopene , Membrane Proteins , Protective Agents , Animals , Mice , Atrazine/toxicity , Kidney/drug effects , Kidney/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lycopene/pharmacology , Lycopene/administration & dosage , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Male , Protective Agents/pharmacology , Protective Agents/administration & dosage , Humans , Herbicides , Kidney Diseases/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/genetics , Kidney Diseases/drug therapy , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction/drug effects
5.
J Agric Food Chem ; 71(14): 5745-5755, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36977485

ABSTRACT

Phthalates are widely used synthetic chemicals that determine endocrine disruption effects on female reproductivity and oviposition. Our study demonstrated that the mitochondrial quality in ovarian granulosa cells (GCs) is associated with a poor prognosis in female reproduction. However, the molecular mechanism of di-(2-ethylhexyl) phthalate (DEHP) exposure on the quail ovarian GC layer is still unknown. To validate the effects of DEHP on the GC layer, 8 days' old 150 female Japanese quail were treated orally with DEHP (250, 500, and 750 mg/kg BW/day) for 45 days to explore the toxic effects of DEHP on the ovarian GC layer. Histopathological assessment and ultrastructure observation found that DEHP decreased the thickness of the GC layer, resulted in mitochondrial damage, and activated mitocytosis. Additionally, the results further suggested that DEHP impacted the secretion of steroid hormones (reduced FSH, E2, and T levels and boosted Prog, PRL, and LH levels) by triggering mitocytosis (enhanced transcription of MYO19 and protein of KIF5B levels), mitochondrial dynamics (increasing mRNA and protein levels of OPA1, DRP1, MFN1, and MFN2), mitophagy (increasing mRNA and protein levels of Parkin, LC3B, and P62), and inducing GC function disorder. In conclusion, our research provided a new idea to explain the mechanism of DEHP toxicity of the ovarian GC layer in quail and presented insights into the role of mitocytosis in DEHP-induced ovarian GC layer injury.


Subject(s)
Coturnix , Diethylhexyl Phthalate , Animals , Female , Quail , Diethylhexyl Phthalate/toxicity , Granulosa Cells
SELECTION OF CITATIONS
SEARCH DETAIL