Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 182(1): 50-58.e8, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32516571

ABSTRACT

COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensin-converting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Disease Models, Animal , Mice, Transgenic , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Female , Humans , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/virology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic/genetics , Pandemics , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Viral Tropism , Weight Loss
2.
Brain ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875478

ABSTRACT

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

3.
Exp Cell Res ; 437(1): 114007, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38499142

ABSTRACT

Gastric cancer metastasis is a major cause of poor prognosis. Our previous research showed that methionine restriction (MR) lowers the invasiveness and motility of gastric carcinoma. In this study, we investigated the particular mechanisms of MR on gastric carcinoma metastasis. In vitro, gastric carcinoma cells (AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45) were grown in an MR medium for 24 h. In vivo, BALB/c mice were given a methionine-free (Met-) diet. Transwell assays were used to investigate cell invasion and migration. The amounts of Krüppel like factor 10 (KLF10) and cystathionine ß-synthase (CBS) were determined using quantitative real-time PCR and Western blot. To determine the relationship between KLF10 and CBS, chromatin immunoprecipitation and a dual-luciferase reporter experiment were used. Hematoxylin-eosin staining was used to detect lung metastasis. Liquid chromatography-mass spectrometry was used to determine cystathionine content. MR therapy had varying effects on the invasion and migration of gastric carcinoma cells AGS, SNU-5, MKN7, KATO III, SNU-1, and MKN45. KLF10 was highly expressed in AGS cells but poorly expressed in KATO III cells. KLF10 improved MR's ability to prevent gastric carcinoma cell invasion and migration. In addition, KLF10 may interact with CBS, facilitating transcription. Further detection revealed that inhibiting the KLF10/CBS-mediated trans-sulfur pathway lowered Met-'s inhibitory effect on lung metastasis development. KLF10 transcription activated CBS, accelerated the trans-sulfur pathway, and increased gastric carcinoma cells' susceptibility to MR.


Subject(s)
Carcinoma , Lung Neoplasms , Stomach Neoplasms , Mice , Animals , Methionine/metabolism , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Stomach Neoplasms/pathology , Racemethionine , Sulfur , Lung Neoplasms/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Early Growth Response Transcription Factors/metabolism
4.
Biol Chem ; 405(4): 257-265, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-37943731

ABSTRACT

The prevention and treatment of gastric cancer has been the focus and difficulty of medical research. We aimed to explore the mechanism of inhibiting migration and invasion of gastric cancer cells by methionine restriction (MR). The human gastric cancer cell lines AGS and MKN45 cultured with complete medium (CM) or medium without methionine were used for in vitro experiments. MKN45 cells were injected tail vein into BALB/c nude mice and then fed with normal diet or methionine diet for in vivo experiments. MR treatment decreased cell migration and invasion, increased E-cadherin expression, decreased N-cadherin and p-p65 expressions, and inhibited nuclear p65 translocation of AGS and MKN45 cells when compared with CM group. MR treatment increased IκBα protein expression and protein stability, and decreased IκBα protein ubiquitination level and TRIM47 expression. TRIM47 interacted with IκBα protein, and overexpression of TRIM47 reversed the regulatory effects of MR. TRIM47 promoted lung metastasis formation and partially attenuated the effect of MR on metastasis formation in vivo compared to normal diet group mice. MR reduces TRIM47 expression, leads to the degradation of IκBα, and then inhibits the translocation of nuclear p65 and the migration and invasion of gastric cancer cells.


Subject(s)
Stomach Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Methionine/metabolism , Methionine/pharmacology , Mice, Nude , Neoplasm Proteins/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/pharmacology , Nuclear Proteins/metabolism , Racemethionine/metabolism , Racemethionine/pharmacology , Stomach Neoplasms/metabolism , Tripartite Motif Proteins/metabolism
5.
J Biol Chem ; 298(6): 102017, 2022 06.
Article in English | MEDLINE | ID: mdl-35526564

ABSTRACT

Jumonji domain-containing 3 (JMJD3/KDM6B) is a histone demethylase that plays an important role in regulating development, differentiation, immunity, and tumorigenesis. However, the mechanisms responsible for the epigenetic regulation of inflammation during mastitis remain incompletely understood. Here, we aimed to investigate the role of JMJD3 in the lipopolysaccharide (LPS)-induced mastitis model. GSK-J1, a small molecule inhibitor of JMJD3, was applied to treat LPS-induced mastitis in mice and in mouse mammary epithelial cells in vivo and in vitro. Breast tissues were then collected for histopathology and protein/gene expression examination, and mouse mammary epithelial cells were used to investigate the mechanism of regulation of the inflammatory response. We found that the JMJD3 gene and protein expression were upregulated in injured mammary glands during mastitis. Unexpectedly, we also found JMJD3 inhibition by GSK-J1 significantly alleviated the severity of inflammation in LPS-induced mastitis. These results are in agreement with the finding that GSK-J1 treatment led to the recruitment of histone 3 lysine 27 trimethylation (H3K27me3), an inhibitory chromatin mark, in vitro. Furthermore, mechanistic investigation suggested that GSK-J1 treatment directly interfered with the transcription of inflammatory-related genes by H3K27me3 modification of their promoters. Meanwhile, we also demonstrated that JMJD3 depletion or inhibition by GSK-J1 decreased the expression of toll-like receptor 4 and negated downstream NF-κB proinflammatory signaling and subsequently reduced LPS-stimulated upregulation of Tnfa, Il1b, and Il6. Together, we propose that targeting JMJD3 has therapeutic potential for the treatment of inflammatory diseases.


Subject(s)
Enzyme Inhibitors , Jumonji Domain-Containing Histone Demethylases , Mastitis , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , Epithelial Cells , Female , Histones/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Lipopolysaccharides , Mammary Glands, Animal/cytology , Mastitis/chemically induced , Mastitis/drug therapy , Mice
6.
EMBO Rep ; 22(12): e52124, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34647680

ABSTRACT

This study explores the role of the long noncoding RNA (LncRNA) CRNDE in cisplatin (CDDP) resistance of gastric cancer (GC) cells. Here, we show that LncRNA CRNDE is upregulated in carcinoma tissues and tumor-associated macrophages (TAMs) of GC patients. In vitro experiments show that CRNDE is enriched in M2-polarized macrophage-derived exosomes (M2-exo) and is transferred from M2 macrophages to GC cells via exosomes. Silencing CRNDE in M2-exo reverses the promotional effect of M2-exo on cell proliferation in CDDP-treated GC cells and homograft tumor growth in CDDP-treated nude mice. Mechanistically, CRNDE facilitates neural precursor cell expressed developmentally downregulated protein 4-1 (NEDD4-1)-mediated phosphatase and tensin homolog (PTEN) ubiquitination. Silencing CRNDE in M2-exo enhances the CDDP sensitivity of GC cells treated with M2-exo, which is reduced by PTEN knockdown. Collectively, these data reveal a vital role for CRNDE in CDDP resistance of GC cells and suggest that the upregulation of CRNDE in GC cells may be attributed to the transfer of TAM-derived exosomes.


Subject(s)
Exosomes , MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Cisplatin/metabolism , Cisplatin/pharmacology , Cisplatin/therapeutic use , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
7.
BMC Pregnancy Childbirth ; 23(1): 683, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735364

ABSTRACT

BACKGROUND: Ventricular septal defect (VSD) is the most common subtype of congenital heart disease. In the present study, we aimed to determine whether chromosome aberration was associated with the occurrence of VSD and evaluate the association of VSD size, location and chromosome aberration with adverse outcomes in the Chinese fetuses. METHODS: Fetuses with VSD and comprehensive follow-up data were included and evaluated retrospectively. Medical records were used to collect epidemiological data and foetal outcomes. For VSD fetuses, conventional karyotype and microarray analysis were conducted. After adjusting confounding factors by using multivariable logistic regression analyses, the association between chromosome variations and VSD occurrence was explored. The association between defect size, location and chromosome aberrations and adverse foetal outcomes was also investigated. RESULTS: Chromosome aberration was the risk factor for VSD occurrence, raising 6.5-fold chance of developing VSD. Chromosome aberration, peri-membranous site and large defect size of VSD were significant risk factors of adverse fetal outcome. Chromosome aberrations, including pathogenic copy number variations (CNVs) and variations of uncertain significance (VUS), were both risk factors, increasing the risk of the adverse fetal outcome by 55.9 times and 6.7 times, respectively. The peri-membranous site would increase 5.3-fold risk and defects larger than 5 mm would increase the 7.1-fold risk for poor fetal outcome. CONCLUSIONS: The current investigation revealed that chromosomal abnormalities, large defects, and the peri-membranous site were all risk factors for poor fetal outcomes. Our study also indicated that chromosome aberration was one of risk factors for the VSD occurrence.


Subject(s)
DNA Copy Number Variations , Heart Septal Defects, Ventricular , Humans , Retrospective Studies , Risk Factors , Fetus , Heart Septal Defects, Ventricular/epidemiology , Heart Septal Defects, Ventricular/genetics , Prognosis , Chromosome Aberrations , Factor Analysis, Statistical
8.
BMC Pulm Med ; 23(1): 166, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173675

ABSTRACT

BACKGROUND: Centrosomal protein 55 (CEP55) plays a significant role in specific cancers. However, comprehensive research on CEP55 is lacking in pan-cancer. METHODS: In-house and multi-center samples (n = 15,823) were used to analyze CEP55 in 33 cancers. The variance of CEP55 expression levels among tumor and control groups was evaluated by the Wilcoxon rank-sum test and standardized mean difference (SMD). The clinical value of CEP55 in cancers was assessed using receiver operating characteristic (ROC) curves, Cox regression analysis, and Kaplan-Meier curves. The correlations between CEP55 expression and the immune microenvironment were explored using Spearman's correlation coefficient. RESULTS: The data of clustered regularly interspaced short palindromic repeats confirmed that CEP55 was essential for the survival of cancer cells in multiple cancer types. Elevated CEP55 mRNA expression was observed in 20 cancers, including glioblastoma multiforme (p < 0.05). CEP55 mRNA expression made it feasible to distinguish 21 cancer types between cancer specimens and their control samples (AUC = 0.97), indicating the potential of CEP55 for predicting cancer status. Overexpression of CEP55 was correlated with the prognosis of cancer individuals for 18 cancer types, exhibiting its prognostic value. CEP55 expression was relevant to tumor mutation burden, microsatellite instability, neoantigen counts, and the immune microenvironment in various cancers (p < 0.05). The expression level and clinical relevance of CEP55 in cancers were verified in lung squamous cell carcinoma using in-house and multi-center samples (SMD = 4.07; AUC > 0.95; p < 0.05). CONCLUSION: CEP55 may be an immune-related predictive and prognostic marker for multiple cancers, including lung squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Humans , Prognosis , Carcinoma, Squamous Cell/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Messenger/genetics , Tumor Microenvironment/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
9.
Kardiologiia ; 63(3): 55-60, 2023 Mar 31.
Article in Russian | MEDLINE | ID: mdl-37061861

ABSTRACT

Aim    To study platelet adhesion mediated by von Willebrand factor (VWF) in patients with premature ischemic heart disease (IHD).Material and methods    This study enrolled 58 patients with stable IHD, including 45 men younger than 55 years with the first manifestation of IHD at the age of <50 years and 13 women younger than 65 years with the first manifestation of IHD at the age of <60 years. The control group consisted of 33 patients, 13 men younger than 55 years and 20 women younger than 65 years without IHD. Platelet adhesion to the collagen surface at the shear rate of 1300 s-1 was studied by evaluating the intensity of scattered laser light from the collagen-coated optical substrate in a flow chamber of a microfluidic device after 15-min circulation of whole blood in the chamber. Decreases in platelet adhesion after addition to the blood of monoclonal antibodies (mAb) to platelet receptors glycoproteins Ib (GPIb) to inhibit the receptor interaction with VWF were compared for patients of both groups. Results    In patients with premature IHD, the decrease in platelet adhesion following the platelet GPIb receptor inhibition was significantly less than in patients of the control group (74.8 % (55.6; 82.7) vs. 28.9 % (-9.8; 50,5), p <0.001). For the entire sample, the median decrease in platelet adhesion following the GPIb receptor inhibition was 62.8 % (52.2; 71.2). With an adjustment for traditional risk factors of IHD, a decrease in platelet adhesion of >62.8% after blocking GPIb receptors increased the likelihood of premature IHD (OR=9.84, 95 % CI: 2.80-34.59; p <0.001).Conclusion    Blocking the interaction of GPIb receptors with VWF in patients with premature IHD and increased shear rate induced a greater decrease in platelet adhesion than in patients without this disease. This suggested that an excessive interaction of VWF with platelets might contribute to the pathogenesis of premature IHD.


Subject(s)
Coronary Artery Disease , von Willebrand Factor , Humans , Female , Middle Aged , von Willebrand Factor/pharmacology , von Willebrand Factor/physiology , Coronary Artery Disease/diagnosis , Platelet Adhesiveness/physiology , Blood Platelets , Platelet Glycoprotein GPIb-IX Complex , Collagen
10.
BMC Cancer ; 22(1): 713, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768832

ABSTRACT

BACKGROUND: Pituitary tumor transforming gene-1 (PTTG1) transcription factor is identified as carcinogenic and associated with tumor invasiveness, but its role in bladder cancer (BLCA) remains obscure. This research is intended to analyze the aberrant expression and clinical significance of PTTG1 in BLCA, explore the relationship between PTTG1 and tumor microenvironment characteristics and predict its potential transcriptional activity in BLCA tissue. METHODS: We compared the expression discrepancy of PTTG1 mRNA in BLCA and normal bladder tissue, using the BLCA transcriptomic datasets from GEO, ArrayExpress, TCGA, and GTEx. In-house immunohistochemical staining was implemented to determine the PTTG1 protein intensity. The prognostic value of PTTG1 was evaluated using the Kaplan-Meier Plotter. CRISPR screen data was utilized to estimate the effect PTTG1 interference has on BLCA cell lines. We predicted the abundance of the immune cells in the BLCA tumor microenvironment using the microenvironment cell populations-counter and ESTIMATE algorithms. Single-cell RNA sequencing data was applied to identify the major cell types in BLCA, and the dynamics of BLCA progression were revealed using pseudotime analysis. PTTG1 target genes were predicted by CistromeDB. RESULTS: The elevated expression level of PTTG1 was confirmed in 1037 BLCA samples compared with 127 non-BLCA samples, with a standardized mean difference value of 1.04. Higher PTTG1 expression status exhibited a poorer BLCA prognosis. Moreover, the PTTG1 Chronos genetic effect scores were negative, indicating that PTTG1 silence may inhibit the proliferation and survival of BLCA cells. With PTTG1 mRNA expression level increasing, higher natural killer, cytotoxic lymphocyte, and monocyte lineage cell infiltration levels were observed. A total of four candidate targets containing CHEK2, OCIAD2, UBE2L3, and ZNF367 were determined ultimately. CONCLUSIONS: PTTG1 mRNA over-expression may become a potential biomarker for BLCA prognosis. Additionally, PTTG1 may correlate with the BLCA tumor microenvironment and exert transcriptional activity by targeting CHEK2, OCIAD2, UBE2L3, and ZNF367 in BLCA tissue.


Subject(s)
Pituitary Neoplasms , Securin , Urinary Bladder Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Kruppel-Like Transcription Factors/metabolism , Neoplasm Proteins/genetics , Oncogenes , Pituitary Neoplasms/genetics , Pituitary Neoplasms/metabolism , Prognosis , RNA, Messenger/genetics , Securin/biosynthesis , Securin/genetics , Transcription Factors/genetics , Tumor Microenvironment/genetics
11.
BMC Cancer ; 22(1): 1244, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36456931

ABSTRACT

BACKGROUND: Acid phosphatase type 6 (ACP6) is a mitochondrial lipid phosphate phosphatase that played a role in regulating lipid metabolism and there is still blank in the clinico-pathological significance and functional roles of ACP6 in human cancers. No investigations have been conducted on ACP6 in hepatocellular carcinoma (HCC) up to date. METHODS: Herein, we appraised the clinico-pathological significance of ACP6 in HCC via organizing expression profiles from globally multi-center microarrays and RNA-seq datasets. The molecular basis of ACP6 in HCC was explored through multidimensional analysis. We also carried out in vitro and in vivo experiment on nude mice to investigate the effect of knocking down ACP6 expression on biological functions of HCC cells, and to evaluate the expression variance of ACP6 in xenograft of HCC tissues before and after the treatment of NC. RESULTS: ACP6 displayed significant overexpression in HCC samples (standard mean difference (SMD) = 0.69, 95% confidence interval (CI) = 0.56-0.83) and up-regulated ACP6 performed well in screening HCC samples from non-cancer liver samples. ACP6 expression was also remarkably correlated with clinical progression and worse overall survival of HCC patients. There were close links between ACP6 expression and immune cells including B cells, CD8 + T cells and naive CD4 + T cells. Co-expressed genes of ACP6 mainly participated in pathways including cytokine-cytokine receptor interaction, glucocorticoid receptor pathway and NABA proteoglycans. The proliferation and migration rate of HCC cells transfected with ACP6 siRNA was significantly suppressed compared with those transfected with negative control siRNA. ACP6 expression was significantly inhibited by nitidine chloride (NC) in xenograft HCC tissues. CONCLUSIONS: ACP6 expression may serve as novel clinical biomarker indicating the clinical development of HCC and ACP6 might be potential target of anti-cancer effect by NC in HCC.


Subject(s)
Acid Phosphatase , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Acid Phosphatase/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice, Nude , RNA, Small Interfering
12.
Epilepsia ; 63(4): 936-949, 2022 04.
Article in English | MEDLINE | ID: mdl-35170024

ABSTRACT

OBJECTIVE: Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse drug reactions. Antiseizure medications (ASMs) with aromatic ring structure, including carbamazepine, are among the most common culprits. Screening for human leukocyte antigen (HLA) allele HLA-B*15:02 is recommended prior to initiating treatment with carbamazepine in Asians, but this allele has low positive predictive value. METHODS: We performed whole genome sequencing and analyzed 6 199 696 common variants among 113 aromatic ASM-induced SJS/TEN cases and 84 tolerant controls of Han Chinese ethnicity. RESULTS: In the primary analysis, nine variants reached genome-wide significance (p < 5e-08), one in the carbamazepine subanalysis (85 cases vs. 77 controls) and a further eight identified in HLA-B*15:02-negative subanalysis (35 cases and 53 controls). Interaction analysis between each novel variant from the primary analysis found that five increased risk irrespective of HLA-B*15:02 status or zygosity. HLA-B*15:02-positive individuals were found to have reduced risk if they also carried a chromosome 12 variant, chr12.9426934 (heterozygotes: relative risk = .71, p = .001; homozygotes: relative risk = .23, p < .001). All significant variants lie within intronic or intergenic regions with poorly understood functional consequence. In silico functional analysis of suggestive variants (p < 5e-6) identified through the primary and subanalyses (stratified by HLA-B*15:02 status and drug exposure) suggests that genetic variation within regulatory DNA may contribute to risk indirectly by disrupting the regulation of pathology-related genes. The genes implicated were specific either to the primary analysis (CD9), HLA-B*15:02 carriers (DOCK10), noncarriers (ABCA1), carbamazepine exposure (HLA-E), or phenytoin exposure (CD24). SIGNIFICANCE: We identified variants that could explain why some carriers of HLA-B*15:02 tolerate treatment, and why some noncarriers develop ASM-induced SJS/TEN. Additionally, this analysis suggests that the mixing of HLA-B*15:02 carrier status in previous studies might have masked variants contributing to susceptibility, and that inheritance of risk for ASM-induced SJS/TEN is complex, likely involving multiple risk variants.


Subject(s)
Anticonvulsants , Stevens-Johnson Syndrome , Anticonvulsants/adverse effects , Carbamazepine/adverse effects , DNA , Genetic Predisposition to Disease/genetics , HLA-B Antigens/genetics , HLA-B15 Antigen/genetics , Humans , Risk Factors , Stevens-Johnson Syndrome/genetics
13.
Mol Cell Biochem ; 477(7): 2001-2013, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35394639

ABSTRACT

Chemotherapy resistance of colorectal cancer stem cells (CRC-SCs) has become a major challenge in clinical treatment of cancer. Methionine restriction (MR) enhances the therapeutic effect of chemotherapeutic agents. The aim of this study was to explore the molecular pathways that MR affects the chemotherapeutic sensitivity of CRC-SCs. CD133+ and CD133- SW480 or SW620 cells were isolated by magnetic-activated cell sorting (MACS). Mouse xenograft tumor model was established by subcutaneous inoculation of CD133+ SW480. MTT assay was used to detect cell viability. Phase distribution of cell cycle was detected by flow cytometry. Western blotting was used to detect drug-resistant related protein expression. miR-320d and transcription factor c-Myc expressions were detected by qRT-PCR. The interaction between miR-320d and c-Myc was verified by luciferase assay. CD133+ SW480 and SW620 cells were more resistant to 5-fluorouracil (5-FU) than CD133- cells. In vitro and in vivo experiments showed that 5-FU and MR combined therapy further inhibited CD133+ cell activity and ATP binding cassette subfamily G member 2 (ABCG2) expression, and reduced tumor volume compared with drug administration alone. Interference with miR-320d or overexpression of c-Myc reversed the increased chemotherapeutic sensitivity of CRC-SCs induced by synergistic therapy with 5-FU and MR. miR-320d can target and regulate c-Myc. Interference with c-Myc could reverse the increase in cell viability and ABCG2 expression caused by down-regulation of miR-320d. In conclusion, the combined chemotherapy with MR can enhance the chemotherapeutic sensitivity of CRC-SCs by up-regulation of miR-320d to inhibit c-Myc expression, which lays a molecular basis for MR regulation of chemotherapeutic sensitivity of CRC-SCs.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gene Expression Regulation, Neoplastic , Humans , Methionine/pharmacology , Mice , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism
14.
Brain ; 144(10): 3050-3060, 2021 11 29.
Article in English | MEDLINE | ID: mdl-33876820

ABSTRACT

The unc-13 homolog B (UNC13B) gene encodes a presynaptic protein, mammalian uncoordinated 13-2 (Munc13-2), which is highly expressed in the brain-predominantly in the cerebral cortex-and plays an essential role in synaptic vesicle priming and fusion, potentially affecting neuronal excitability. However, the functional significance of the UNC13B mutation in human disease is not known. In this study, we screened for novel genetic variants in a cohort of 446 unrelated cases (families) with partial epilepsy without acquired causes by trio-based whole-exome sequencing. UNC13B variants were identified in 12 individuals affected by partial epilepsy and/or febrile seizures from eight unrelated families. The eight probands all had focal seizures and focal discharges in EEG recordings, including two patients who experienced frequent daily seizures and one who showed abnormalities in the hippocampus by brain MRI; however, all of the patients showed a favourable outcome without intellectual or developmental abnormalities. The identified UNC13B variants included one nonsense variant, two variants at or around a splice site, one compound heterozygous missense variant and four missense variants that cosegregated in the families. The frequency of UNC13B variants identified in the present study was significantly higher than that in a control cohort of Han Chinese and controls of the East Asian and all populations in the Genome Aggregation Database (gnomAD). Computational modelling, including hydrogen bond and docking analyses, suggested that the variants lead to functional impairment. In Drosophila, seizure rate and duration were increased by Unc13b knockdown compared to wild-type flies, but these effects were less pronounced than in sodium voltage-gated channel alpha subunit 1 (Scn1a) knockdown Drosophila. Electrophysiological recordings showed that excitatory neurons in Unc13b-deficient flies exhibited increased excitability. These results indicate that UNC13B is potentially associated with epilepsy. The frequent daily seizures and hippocampal abnormalities but ultimately favourable outcome under anti-epileptic therapy in our patients indicate that partial epilepsy caused by UNC13B variant is a clinically manageable condition.


Subject(s)
Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/genetics , Genetic Variation/genetics , Nerve Tissue Proteins/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Animals, Genetically Modified , Child , Child, Preschool , Drosophila , Epilepsies, Partial/physiopathology , Female , Humans , Male , Treatment Outcome
15.
Support Care Cancer ; 30(4): 3043-3055, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34741654

ABSTRACT

BACKGROUND: Nondrug treatments are potentially beneficial for cancer patients. However, the effect of sleep on cancer-related fatigue (CRF) and quality of life (QOL) in cancer patients remains unclear. We conducted a meta-analysis of randomized controlled trials to examine the efficacy of sleep in cancer patients undergoing treatment. METHODS: The PubMed, Ovid, Embase, Cochrane Central Register of Controlled Trials, and China National Knowledge Infrastructure databases were searched to identify suitable studies. Stata 15.0 software was used for statistical analyses. Sensitivity analyses were conducted. Fourteen studies (6 in English and 8 in Chinese) involving 1151 patients were included in the meta-analysis. Ten, five, and six studies that assessed the effects of sleep on CRF, QOL, and quality of sleep, respectively, in cancer patients undergoing treatment were identified. RESULTS: Sleep interventions significantly affected overall CRF (standardized mean difference (SMD) = -1.52, P < 0.01), overall QOL (SMD = 1.20, P < 0.01), physical fatigue (SMD = -0.66, P < 0.01), cognitive fatigue (SMD = -0.38, P = 0.015), and physical function (SMD = 0.64, P < 0.01). Comprehensive intervention measures focusing on sleep, sleep nondrug interventions, and interventions for ≥3 or <3 months affect CRF. However, no significant effects on emotional fatigue, emotional function, perpetual fatigue, depression, or quality of sleep were observed. CONCLUSIONS: Comprehensive interventions focusing on sleep are helpful for CRF. Sleep interventions may only affect physiological function and have no effect on emotional function, perpetual function, or sleep quality. Future research should focus on how to combine sleep interventions with psychological, social, cognitive, and emotional interventions and provide targeted comprehensive nursing measures to better improve CRF, sleep quality, and QOL.


Subject(s)
Neoplasms , Quality of Life , China , Fatigue/etiology , Fatigue/therapy , Humans , Neoplasms/complications , Neoplasms/psychology , Neoplasms/therapy , Sleep
16.
Int J Med Sci ; 19(3): 572-587, 2022.
Article in English | MEDLINE | ID: mdl-35370463

ABSTRACT

BACKGROUND: The role of HOXA family genes in the occurrence and progression of a variety of human cancers has been scatteredly reported. However, there is no systematic study on the differential expression, prognostic significance and potential molecular mechanism of HOXA4 and HOXA5 in LUAD. METHODS: In-house immunohistochemistry (IHC), multi-center microarrays, RT-qPCR and RNA-seq data were incorporated for comprehensively evaluating the expression and prognostic value of HOXA4 and HOXA5 in LUAD. The mechanism of HOXA4 and HOXA5 in the formation and development of LUAD was analyzed from multiple aspects of immune correlations, upstream transcriptional regulation, functional states of single cells and co-expressed gene network. The functional roles of HOXA4 and HOXA5 in LUAD were validated by in vitro experiments. RESULTS: As a result, in 3201 LUAD samples and 2494 non-cancer lung samples, HOXA4 and HOXA5 were significantly downexpressed (P < 0.05). The aberrant expression of HOXA5 was significantly correlated with the clinical progression of LUAD (P < 0.05). HOXA5 showed remarkable prognostic value for LUAD patients (P < 0.05). The expression of HOXA4 and HOXA5 in LUAD were negatively correlated with tumor purity and positively correlated with the infiltration of various immune cells such as B cells, T cells and macrophages. HOXA4 and HOXA5 overexpression had notable inhibitory effect on the proliferation, migration and invasion of LUAD cells. CONCLUSIONS: In conclusion, the identified downexpressed HOXA4 and HOXA5 had significant distinguishing ability for LUAD samples and affected the cellular functions of LUAD cells. The low expression of HOXA5 indicated worse overall survival of LUAD patients. Therefore, the two HOXA family genes especially HOXA5 may serve as potential biomarkers for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Gene Regulatory Networks , Homeodomain Proteins/genetics , Humans , Immunohistochemistry , Lung Neoplasms/pathology , Prognosis , Transcription Factors/genetics
17.
BMC Pulm Med ; 22(1): 300, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927660

ABSTRACT

BACKGROUND: Little is known about the relationship between integrin subunit alpha V (ITGAV) and cancers, including small cell lung cancer (SCLC). METHODS: Using large sample size from multiple sources, the clinical roles of ITGAV expression in SCLC were explored using differential expression analysis, receiver operating characteristic curves, Kaplan-Meier curves, etc. RESULTS: Decreased mRNA (SMD = - 1.05) and increased protein levels of ITGAV were detected in SCLC (n = 865). Transcription factors-ZEB2, IK2F1, and EGR2-may regulate ITGAV expression in SCLC, as they had ChIP-Seq (chromatin immunoprecipitation followed by sequencing) peaks upstream of the transcription start site of ITGAV. ITGAV expression made it feasible to distinguish SCLC from non-SCLC (AUC = 0.88, sensitivity = 0.78, specificity = 0.84), and represented a risk role in the prognosis of SCLC (p < 0.05). ITGAV may play a role in cancers by influencing several immunity-related signaling pathways and immune cells. Further, the extensive pan-cancer analysis verified the differential expression of ITGAV and its clinical significance in multiple cancers. CONCLUSION: ITGAV served as a potential marker for prognosis and identification of cancers including SCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Integrins/metabolism , Lung Neoplasms/pathology , Prognosis , Small Cell Lung Carcinoma/genetics
18.
World J Surg Oncol ; 20(1): 359, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369089

ABSTRACT

BACKGROUND: The molecular mechanism of laryngeal squamous cell carcinoma (LSCC) is not completely clear, which leads to poor prognosis and treatment difficulties for LSCC patients. To date, no study has reported the exact expression level of zinc finger protein 71 (ZNF71) and its molecular mechanism in LSCC. METHODS: In-house immunohistochemistry (IHC) staining (33 LSCC samples and 29 non-LSCC samples) was utilized in analyzing the protein expression level of ZNF71 in LSCC. Gene chips and high-throughput sequencing data collected from multiple public resources (313 LSCC samples and 192 non-LSCC samples) were utilized in analyzing the exact mRNA expression level of ZNF71 in LSCC. Single-cell RNA sequencing (scRNA-seq) data was used to explore the expression status of ZNF71 in different LSCC subpopulations. Enrichment analysis of ZNF71, its positively and differentially co-expressed genes (PDCEGs), and its downstream target genes was employed to detect the potential molecular mechanism of ZNF71 in LSCC. Moreover, we conducted correlation analysis between ZNF71 expression and immune infiltration. RESULTS: ZNF71 was downregulated at the protein level (area under the curve [AUC] = 0.93, p < 0.0001) and the mRNA level (AUC = 0.71, p = 0.023) in LSCC tissues. Patients with nodal metastasis had lower protein expression level of ZNF71 than patients without nodal metastasis (p < 0.05), and male LSCC patients had lower mRNA expression level of ZNF71 than female LSCC patients (p < 0.01). ZNF71 was absent in different LSCC subpopulations, including cancer cells, plasma cells, and tumor-infiltrated immune cells, based on scRNA-seq analysis. Enrichment analysis showed that ZNF71 and its PDCEGs may influence the progression of LSCC by regulating downstream target genes of ZNF71. These downstream target genes of ZNF71 were mainly enriched in tight junctions. Moreover, downregulation of ZNF71 may influence the development and even therapy of LSCC by reducing immune infiltration. CONCLUSION: Downregulation of ZNF71 may promote the progression of LSCC by reducing tight junctions and immune infiltration; this requires further study.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , Humans , Male , Female , Squamous Cell Carcinoma of Head and Neck/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/pathology , Down-Regulation , Immunohistochemistry , Carcinoma, Squamous Cell/pathology , RNA, Messenger/genetics , Data Mining , Zinc Fingers , Staining and Labeling , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Prognosis
19.
Cancer Cell Int ; 21(1): 442, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34419067

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) remains one of the most common malignant neoplasms. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a key role in the lipid remodelling and is correlated with various neoplasms. Nonetheless, the biological functions and molecular mechanisms of LPCAT1 underlying HCC remain obscure. METHODS: In the present study, we investigated the role of LPCAT1 in the progression of HCC. In-house RT-qPCR, tissue microarrays, and immunohistochemistry were performed to detect the expression levels and the clinical value of LPCAT1 in HCC. External datasets were downloaded to confirm the results. Proliferation, migration, invasiveness, cell cycle, and apoptosis assays were conducted to reveal the biological effects LPCAT1 has on SMMC-7721 and Huh7 cells. HCC differentially expressed genes and LPCAT1 co-expressed genes were identified to explore the molecular mechanisms underlying HCC progression. RESULTS: LPCAT1 showed upregulated expression in 3715 HCC specimens as opposed to 3105 non-tumour specimens. Additionally, LPCAT1 might be an independent prognostic factor for HCC. LPCAT1-knockout hampered cellular proliferation, migration, and metastasis in SMMC-7721 and Huh7 cells. More importantly, the cell cycle and chemical carcinogenesis were the two most enriched signalling pathways. CONCLUSIONS: The present study demonstrated that increased LPCAT1 correlated with poor prognosis in HCC patients and fuelled HCC progression by promoting cellular growth, migration, and metastasis.

20.
Dig Dis Sci ; 66(4): 1045-1053, 2021 04.
Article in English | MEDLINE | ID: mdl-32323072

ABSTRACT

BACKGROUND/AIMS: Targeted drug delivery vehicles with low immunogenicity and toxicity are needed for cancer therapy. Here, we prepare an active targeting drug carrier of low immunogenicity and toxicity for targeted therapy. METHODS: Immature dendritic cells (imDCs) from BALB/c mice were used as donor cells of exosomes (Exos) that were transfected with the plasmids expressing fusion proteins of a tumor-targeting peptide known as internalizing RGD (iRGD) to construct a type of tumor-targeting iRGD-Exos and observe the interaction between these iRGD-Exos. Also, recombinant methioninase (rMETase) was loaded into the iRGD-Exos by electroporation to construct iRGD-Exos-rMETase and to assess the tumor-targeting function of the iRGD-Exos-rMETase. Finally, 30 BALB/c were randomly divided into five groups (n = 6), to observe tumor growth in vivo. RESULTS: The iRGD-Exos-rMETase was 99.58 nm in diameter and presented a unique "goblet" structure under transmission electron microscopy (TEM), with the encapsulation efficiency (EE) of 19.05%. iRGD-Exos-rMETase group has the strongest tumor suppressive effect. Compared to the iRGD-Exos-rMETase group, rMETase group and the blank-Exos-rMETase group were less effective, while the PBS group and the iRGD-Exos group showed no inhibitory effect on tumor growth. After treatment, the iRGD-Exos-rMETase group had gastric tumors significantly smaller and lighter than the other groups (P < 0.05). CONCLUSION: The iRGD-Exos-rMETase is an effective antitumor therapy that delivers rMETase to tumor tissue using the iRGD-Exos. With its favorable inhibitory effect and tumor-targeting function, the iRGD-Exos-rMETase shows excellent potential value and exciting prospects in clinical applications.


Subject(s)
Carbon-Sulfur Lyases/pharmacology , Exosomes , Neoplasms/drug therapy , Oligopeptides/pharmacology , Animals , Antimetabolites, Antineoplastic/immunology , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/toxicity , Dendritic Cells/physiology , Drug Carriers/pharmacology , Drug Delivery Systems/methods , Immunogenetic Phenomena , Mice , Mice, Inbred BALB C , Recombinant Proteins/pharmacology , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL