ABSTRACT
Mutations in the HFE/Hfe gene cause Hereditary Hemochromatosis (HH), a highly prevalent genetic disorder characterized by elevated iron deposition in multiple tissues. HFE acts in hepatocytes to control hepcidin expression, whereas HFE actions in myeloid cells are required for cell-autonomous and systemic iron regulation in aged mice. To address the role of HFE specifically in liver-resident macrophages, we generated mice with a selective Hfe deficiency in Kupffer cells (HfeClec4fCre). The analysis of the major iron parameters in this novel HfeClec4fCre mouse model led us to the conclusion that HFE actions in Kupffer cells are largely dispensable for cellular, hepatic and systemic iron homeostasis.
Subject(s)
Hemochromatosis , Kupffer Cells , Mice , Animals , Kupffer Cells/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Membrane Proteins/metabolism , Liver/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Hemochromatosis/genetics , Hemochromatosis/metabolism , Iron/metabolism , Mice, KnockoutSubject(s)
Hemochromatosis , Iron/metabolism , Macrophages/metabolism , Animals , Hemochromatosis Protein , Immunity , Liver , Mice , Mice, KnockoutABSTRACT
Identification of regulators of osteoblastogenesis that can be pharmacologically targeted is a major goal in combating osteoporosis, a common disease of the elderly population. Here, unbiased kinome RNAi screening in primary murine osteoblasts identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation in both murine and human preosteoblastic cells. Cdk5 knockdown by siRNA, genetic deletion using the Cre-loxP system, or inhibition with the small molecule roscovitine enhanced osteoblastogenesis in vitro. Roscovitine treatment significantly enhanced bone mass by increasing osteoblastogenesis and improved fracture healing in mice. Mechanistically, downregulation of Cdk5 expression increased Erk phosphorylation, resulting in enhanced osteoblast-specific gene expression. Notably, simultaneous Cdk5 and Erk depletion abrogated the osteoblastogenesis conferred by Cdk5 depletion alone, suggesting that Cdk5 regulates osteoblast differentiation through MAPK pathway modulation. We conclude that Cdk5 is a potential therapeutic target to treat osteoporosis and improve fracture healing.
ABSTRACT
One of the most prevalent genetic iron overload disorders in Caucasians is caused by mutations in the HFE gene. Both HFE patients and Hfe-mouse models develop a progressive accumulation of iron in the parenchymal cells of various tissues, eventually resulting in liver cirrhosis, hepatocellular carcinoma, cardiomyopathies, hypogonadism, and other pathologies. Clinical data and preclinical models have brought considerable attention to the correlation between iron overload and the development of osteoporosis in HFE/Hfe hemochromatosis. Our study critically challenges this concept. We show that systemic iron overload, at the degree present in Hfe -/- mice, does not associate with the microarchitecture impairment of long bones, thus excluding a negative effect of iron overload on bone integrity. We further reveal that Hfe actions in osteoblasts and osteoclasts are dispensable for the maintenance of bone and iron homeostasis in mice under steady-state conditions. We conclude that, despite systemic iron overload, Hfe -/- mice present normal physiological bone homeostasis. © 2019 The Authors. JBMR Plus in published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.