Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39057859

ABSTRACT

Transition metal (TM) single-atom catalysts (SACs) have been widely applied in photocatalytic CO2 reduction. In this work, n-p codoping engineering is introduced to account for the modulation of photocatalytic CO2 reduction on a two-dimensional (2D) bismuth-oxyhalide-based cathode by using first-principles calculation. n-p codoping is established via the Coulomb interactions between the negatively charged TM SACs and the positively charged Cl vacancy (VCl) in the dopant-defect pairs. Based on the formation energy of charged defects, neutral dopant-defect pairs for the Fe, Co, and Ni SACs (PTM0) and the -1e charge state of the Cu SAC-based pair (PCu-1) are stable. The electrostatic attraction of the n-p codoping strengthens the stability and solubility of TM SACs by neutralizing the oppositely charged VCl defect and TM dopant. The n-p codoping stabilizes the electron accumulation around the TM SACs. Accumulated electrons modify the d-orbital alignment and shift the d-band center toward the Fermi level, enhancing the reducing capacity of TM SACs based on the d-band theory. Besides the electrostatic attraction of the n-p codoping, the PCu-1 also accumulates additional electrons surrounding Cu SACs and forms a half-occupied dx2-y2 state, which further upshifts the d-band center and improves photocatalytic CO2 reduction. The metastability of Cl multivacancies limits the concentration of the n-p pairs with Cl multivacancies (PTM@nCl (n > 1)). Positively charged centers around the PTM@nCl (n > 1) hinders the CO2 reduction by shielding the charge transfer to the CO2 molecule.

2.
Res Sq ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746411

ABSTRACT

Heterotrimeric G proteins (Gα, Gß and Gγ) act downstream of G-protein-coupled receptors (GPCRs) to mediate signaling pathways that regulate various physiological processes and human disease conditions. Previously, human Gαi and its yeast homolog Gpa1 have been reported to function as intracellular pH sensors, yet the pH sensing capabilities of Gαi and the underlying mechanism remain to be established. Herein, we identify a pH sensing network within Gαi, and evaluate the consequences of pH modulation on the structure and stability of the G-protein. We find that changes over the physiological pH range significantly alter the structure and stability of Gαi-GDP, with the protein undergoing a disorder-to-order transition as the pH is raised from 6.8 to 7.5. Further, we find that modulation of intracellular pH in HEK293 cells regulates Gαi-Gßγ release. Identification of key residues in the pH-sensing network allowed the generation of low pH mimetics that attenuate Gαi-Gßγ release. Our findings, taken together, indicate that pH-dependent structural changes in Gαi alter the agonist-mediated Gßγ dissociation necessary for proper signaling.

SELECTION OF CITATIONS
SEARCH DETAIL