Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.305
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(8): e2316716121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38349874

ABSTRACT

Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.

2.
J Immunol ; 212(1): 57-68, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38019127

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Tm) causes severe foodborne diseases. Interestingly, gut microbial tryptophan (Trp) metabolism plays a pivotal role in such infections by a yet unknown mechanism. This study aimed to explore the impact of Trp metabolism on S. Tm infection and the possible mechanisms involved. S. Tm-infected C57BL6/J mice were used to demonstrate the therapeutic benefits of the Bacillus velezensis JT3-1 (B. velezensis/JT3-1) strain or its cell-free supernatant in enhancing Trp metabolism. Targeted Trp metabolomic analyses indicated the predominance of indole-3-lactic acid (ILA), an indole derivative and ligand for aryl hydrocarbon receptor (AHR). Based on the 16S amplicon sequencing and correlation analysis of metabolites, we found that B. velezensis supported the relative abundance of Lactobacillus and Ligilactobacillus in mouse gut and showed positive correlations with ILA levels. Moreover, AHR and its downstream genes (especially IL-22) significantly increased in mouse colons after B. velezensis or cell-free supernatant treatment, suggesting the importance of AHR pathway activation. In addition, ILA was found to stimulate primary mouse macrophages to secrete IL-22, which was antagonized by CH-223191. Furthermore, ILA could protect mice from S. Tm infection by increasing IL-22 in Ahr+/- mice, but not in Ahr-/- mice. Finally, Trp-rich feeding showed amelioration of S. Tm infection in mice, and the effect depended on gut microbiota. Taken together, these results suggest that B. velezensis-associated ILA contributes to protecting mice against S. Tm infection by activating the AHR/IL-22 pathway. This study provides insights into the involvement of microbiota-derived Trp catabolites in protecting against Salmonella infection.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Salmonella Infections , Animals , Mice , Salmonella typhimurium , Tryptophan/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
3.
Plant Physiol ; 195(1): 617-639, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38285060

ABSTRACT

Revealing the genetic basis for stress-resistant traits in extremophile plants will yield important information for crop improvement. Zygophyllum xanthoxylum, an extant species of the ancient Mediterranean, is a succulent xerophyte that can maintain a favorable water status under desert habitats; however, the genetic basis of this adaptive trait is poorly understood. Furthermore, the phylogenetic position of Zygophyllales, to which Z. xanthoxylum belongs, remains controversial. In this study, we sequenced and assembled the chromosome-level genome of Z. xanthoxylum. Phylogenetic analysis showed that Zygophyllales and Myrtales form a separated taxon as a sister to the clade comprising fabids and malvids, clarifying the phylogenetic position of Zygophyllales at whole-genome scale. Analysis of genomic and transcriptomic data revealed multiple critical mechanisms underlying the efficient osmotic adjustment using Na+ and K+ as "cheap" osmolytes that Z. xanthoxylum has evolved through the expansion and synchronized expression of genes encoding key transporters/channels and their regulators involved in Na+/K+ uptake, transport, and compartmentation. It is worth noting that ZxCNGC1;1 (cyclic nucleotide-gated channels) and ZxCNGC1;2 constituted a previously undiscovered energy-saving pathway for Na+ uptake. Meanwhile, the core genes involved in biosynthesis of cuticular wax also featured an expansion and upregulated expression, contributing to the water retention capacity of Z. xanthoxylum under desert environments. Overall, these findings boost the understanding of evolutionary relationships of eudicots, illustrate the unique water retention mechanism in the succulent xerophyte that is distinct from glycophyte, and thus provide valuable genetic resources for the improvement of stress tolerance in crops and insights into the remediation of sodic lands.


Subject(s)
Phylogeny , Water , Zygophyllum , Water/metabolism , Zygophyllum/genetics , Zygophyllum/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Genomics/methods
4.
FASEB J ; 38(10): e23708, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38805151

ABSTRACT

Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).


Subject(s)
CRISPR-Cas Systems , Cysticercosis , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/blood , Mice , Cysticercosis/diagnosis , Cysticercosis/veterinary , Cysticercosis/parasitology , Echinococcosis/diagnosis , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , Humans
5.
Infect Immun ; 92(8): e0023224, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39037247

ABSTRACT

Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.


Subject(s)
Colitis , Dysbiosis , Echinococcus multilocularis , Gastrointestinal Microbiome , Macrophages , Serpins , Animals , Mice , Serpins/metabolism , Colitis/microbiology , Macrophages/immunology , Macrophages/metabolism , Echinococcus multilocularis/immunology , Helminth Proteins/metabolism , RAW 264.7 Cells , Dextran Sulfate/toxicity , Disease Models, Animal , Cytokines/metabolism , Mice, Inbred C57BL , Female
6.
J Virol ; 97(10): e0121723, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815352

ABSTRACT

IMPORTANCE: African swine fever virus (ASFV) completes the replication process by resisting host antiviral response via inhibiting interferon (IFN) secretion and interferon-stimulated genes (ISGs) function. 2', 5'-Oligoadenylate synthetase gene 1 (OAS1) has been reported to inhibit the replication of various RNA and some DNA viruses. However, the regulatory mechanisms involved in the ASFV-induced IFN-related pathway still need to be fully elucidated. Here, we found that OAS1, as a critical host factor, inhibits ASFV replication in an RNaseL-dependent manner. Furthermore, overexpression of OAS1 can promote the activation of the JAK-STAT pathway promoting innate immune responses. In addition, OAS1 plays a new function, which could interact with ASFV P72 protein to suppress ASFV infection. Mechanistically, OAS1 enhances the proteasomal degradation of P72 by promoting TRIM21-mediated ubiquitination. Meanwhile, P72 inhibits the production of avSG and affects the interaction between OAS1 and DDX6. Our findings demonstrated OAS1 as an important target against ASFV replication and revealed the mechanisms and intrinsic regulatory relationships during ASFV infection.


Subject(s)
2',5'-Oligoadenylate Synthetase , African Swine Fever Virus , African Swine Fever , Tripartite Motif Proteins , Virus Replication , Animals , African Swine Fever Virus/physiology , Capsid Proteins/metabolism , Interferons/metabolism , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Swine , Tripartite Motif Proteins/metabolism , 2',5'-Oligoadenylate Synthetase/metabolism
7.
Infection ; 52(3): 787-800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717734

ABSTRACT

PURPOSE: The principal objective of this project was to review and thoroughly examine the chemical characteristics, pharmacological activity, and quantification methods associated with contezolid. METHODS: The article was based on published and ongoing preclinical and clinical studies on the application of contezolid. These studies included experiments on the physicochemical properties of contezolid, in vitro antimicrobial research, in vivo antimicrobial research, and clinical trials in various phases. There were no date restrictions on these studies. RESULTS: In June 2021, contezolid was approved for treating complicated skin and soft tissue infections. The structural modification of contezolid has resulted in better efficacy compared to linezolid. It inhibits bacterial growth by preventing the production of the functional 70S initiation complex required to translate bacterial proteins. The current evidence has indicated a substantial decline in myelosuppression and monoamine oxidase inhibition without impairing its antibacterial properties. Contezolid was found to have a more significant safety profile and to be metabolised by flavin monooxygenase 5, reducing the risk of harmful effects due to drug-drug interactions. Adjusting doses is unnecessary for patients with mild to moderate renal or hepatic insufficiency. CONCLUSION: As an oral oxazolidinone antimicrobial agent, contezolid is effective against multi-drug resistant Gram-positive bacteria. The introduction of contezolid provided a new clinical option.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacterial Infections , Oxazolidinones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Humans , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Soft Tissue Infections/drug therapy , Soft Tissue Infections/microbiology , Animals , Pyridones
8.
Inorg Chem ; 63(23): 10481-10489, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38783831

ABSTRACT

Achieving high-efficiency tunable emission in a single phosphor remains a significant challenge. Herein, we report a series of Sb3+-doped all-inorganic double perovskites, Sb3+:Cs2NaScCl6, with efficient excitation-dependent emission. In 0.5%Sb3+:Cs2NaScCl6, strong blue emission with a high photoluminescence quantum yield (PLQY) of 85% is obtained under 265 nm light irradiation, which turns into bright neutral white light with a PLQY of 56% when excited at 303 nm. Spectroscopic and computational investigations were performed to reveal the mechanism of this excitation-dependent emission. Sb3+ doping induces two different excitation channels: the internal transition of Sb3+: 5s2 → 5s5p and the electron transfer transition of Sb3+: 5s → Sc3+ 3d. The former one generates excited Sb3+ ions, which can undergo efficient energy transfer to populate the host self-trapped exciton (STE) state, yielding enhanced blue emission. The latter one leads to the formation of a new STE state with the hole localized on Sb3+ and the electron delocalized on the nearest Sc3+, which accounts for the newly exhibited low-energy emission. The difference in the excitation pathways of the two emitting STE states results in the highly efficient excitation-dependent emission, making the doped systems promising anticounterfeiting materials.

9.
Inorg Chem ; 63(1): 621-634, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38100652

ABSTRACT

In this paper, the synthesis, photophysics, electrochemistry, and intramolecular energy transfer of two series of dinuclear and tetranuclear metallic complexes [(bpy)2M1LxM2(bpy)2]4+ (x = 1, 2; M1 = Ru, M2 = Ru/Os; M1 = Os, M2 = Ru) and {[Ru(bpy)2(Lx)]3Ru}8+ based on new heteroditopic bridging ligands (L1 = 6-phenyl-4-Hpip-2-2'-bipyridine, L2 = 6-Hpip-2-2'-bipyridine, Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) are reported. The dimetallic and tetrametallic complexes exhibit rich redox properties with successive reversible metal-centered oxidation and ligand-centered reduction couples. All complexes display intense absorption in the entire ultraviolet-visible spectral regions. The mononuclear [LxRu(bpy)2]2+ and homodinuclear [(bpy)2RuLxRu(bpy)2]4+ complexes display strong Ru-based characteristic emission at room temperature. Interestingly, the optical studies of heterodinuclear complexes reveal almost complete quenching of the RuII-based emission and efficient photoinduced energy transfer, resulting in an OsII-based emission in the near-infrared region. As a result of the intramolecular energy transfer from the center to the periphery and steric hindrance quenching of the peripheral RuII-centered emissive triplet metal-to-ligand charge transfer states, the tetranuclear complexes exhibit weak RuII-based emission with a short lifetime. Since the light absorbed by several chromophores is efficiently directed to the subunit with the lowest-energy excited state, the present multinuclear complexes can be used as well-visible-light-absorption antennas.

10.
BMC Infect Dis ; 24(1): 219, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374030

ABSTRACT

OBJECTIVE: In the present study, we aimed to compare the clinical efficacy and safety of omadacycline (OMC) with its comparators for the treatment of complicated skin and soft tissue infections (cSSTIs) in adult patients. METHODS: Randomized controlled trials (RCTs) evaluating OMC for cSSTIs were searched in databases of PubMed, Embase, Cochrane, Web of Science, and Clinical Trial, up to July 2022. The primary outcomes were clinical efficacy and microbiological response, with secondary outcome was safety. RESULTS: Four RCTs consisting of 1,757 patients were included, with linezolid (LZD) as a comparator drug. For clinical efficacy, OMC was not inferior to LZD in the modified intent-to-treat (MITT) (OR: 1.24, 95% Cl: [0.93, 1.66], P = 0.15) and clinically evaluable (CE) populations (OR: 1.92, 95% Cl: [0.94, 3.92], P = 0.07). For microbiological response, OMC was numerically higher than LZD in the microbiologically evaluable (ME) (OR: 1.74, 95% Cl: [0.81, 3.74], P = 0.16) and microbiological MITT (micro-MITT) populations (OR: 1.27, 95% Cl: [0.92, 1.76], P = 0.14). No significant difference was found in subpopulations of monomicrobial or polymicrobial mixed infection populations. The mortality and adverse event rates were similar between OMC and LZD. CONCLUSIONS: OMC was as good as LZD in terms of clinical efficacy and microbiological response, and has similar safety issues in treating cSSTIs. OMC might be a promising option for treating cSSTIs in adult patients.


Subject(s)
Soft Tissue Infections , Adult , Humans , Anti-Bacterial Agents/adverse effects , Linezolid/therapeutic use , Randomized Controlled Trials as Topic , Soft Tissue Infections/microbiology , Tetracyclines/adverse effects , Treatment Outcome
11.
Bioorg Chem ; 144: 107108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244379

ABSTRACT

Molecules containing C-N bonds are of paramount importance in a diverse array of organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Biocatalytic C-N bond-forming reactions represent powerful strategies for producing these valuable targets, and their significance in the field of synthetic chemistry has steadily increased over the past decade. In this review, we provide a concise overview of recent advancements in the development of C-N bond-forming enzymes, with a particular emphasis on the inherent chemistry involved in these enzymatic processes. Overall, these enzymatic systems have proven their potential in addressing long-standing challenges in traditional small-molecule catalysis.


Subject(s)
Organic Chemicals , Biocatalysis , Organic Chemicals/chemistry , Catalysis
12.
Article in English | MEDLINE | ID: mdl-38982736

ABSTRACT

Circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. This study aimed to investigate the role and molecular mechanisms of circMYO1C in OA. CircMYO1C was upregulated in OA- and interleukin-1ß (IL-1ß)-exposed chondrocytes. The results indicated that circMYO1C knockdown repressed the inflammatory factors (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], interleukin-8 [IL-8], etc.) and apoptosis of chondrocytes following IL-1ß exposure. CircMYO1C was an N6-methyladenosine (m6A)-modified circRNA with m6A characteristics. High mobility group box 1 (HMGB1) was a target of circMYO1C. IL-1ß exposure increased the stability and half-life (t1/2) of HMGB1 mRNA, while silencing circMYO1C reduced HMGB1 mRNA stability. Taken together, circMYO1C targets the m6A/HMGB1 axis to promote chondrocyte apoptosis and inflammation. The present study demonstrates that the circMYO1C/m6A/HMGB1 axis is essential for OA progression, highlighting a novel potential therapeutic target for clinical OA.

13.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38624113

ABSTRACT

Boron carbonitride (BCN) films containing hybridized bonds involving B, C, and N over wide compositional ranges enable an abundant variety of new materials, properties, and applications; however, their electronic performance is still limited by the presence of structural and electronic defects, yielding sluggish mobility and electrical conductivity. This work reports on mechanically stable BCN films and their corresponding optical and electronic properties. The ternary BCN films consisting of hybridized B-C-N bonds have been achieved by varying N2 flow by the radio frequency magnetron sputtering method. The BCN films show a bandgap value ranging from 3.32 to 3.82 eV. Hall effect measurements reveal an n-type conductivity with an improved hall mobility of 226 cm2/V s at room temperature for the optimal film. The n-BCN/p-Si heterojunctions exhibit a nonlinear rectifying characteristic, where the tunneling behavior dominates the injection regimes due to the density of defects, i.e., structural disorder and impurities. Our work demonstrates the tunable electrical properties of BCN/Si p-n diodes and, thus, is beneficial for the potential application in the fields of optics, optoelectronics, and electrics.

14.
Exp Parasitol ; 265: 108813, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117169

ABSTRACT

Babesia duncani, responsible for human babesiosis, is one of the most important tick-borne intraerythrocytic pathogens. Traditionally, babesiosis is definitively diagnosed by detecting parasite DNA in blood samples and examining Babesia parasites in Giemsa-stained peripheral blood smears. Although these techniques are valuable for determining Babesia duncani, they are often time-consuming and laborious. Therefore, developing rapid and reliable B. duncani identification assays is essential for subsequent epidemiological investigations and prevention and control. In this study, a cross-priming amplification (CPA) assay was developed, combined with a vertical flow visualization strip, to rapidly and accurately detect B. duncani infection. The detection limit of this method was as low as 0.98 pg/µl of genomic DNA from B. duncani merozoites per reaction at 59 °C for 60 min. There were no cross-reactions between B. duncani and other piroplasms infective to humans and mammals. A total of 592 blood samples from patients bitten by ticks and experimental infected hamsters were accurately assessed using CPA assay. The average cost of the CPA assay is as low as approximately $ 0.2 per person. These findings indicate that the CPA assay may therefore be a rapid screening tool for detection B. duncani infection, based on its accuracy, speed, and cost-effectiveness, particularly in resource-limited regions with a high prevalence of human babesiosis.

15.
BMC Anesthesiol ; 24(1): 37, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263038

ABSTRACT

OBJECTIVE: This study was aimed to explore the protective effect of electroacupuncture (EA) pretreatment at Zusanli point (ST36) on ventilation-induced lung injury (VILI) and its potential anti-inflammatory mechanism. METHODS: High tidal volume ventilation was used to induce the VILI in mice, and EA pretreatment at ST36 was given for 7 consecutive days. The wet/dry ratio and pathological injury score of lung tissue, and total protein content of pulmonary alveolar lavage fluid (BALF) were detected after 4 h of mechanical ventilation (MV). Meanwhile, the expressions of TLR4 and NF- κB in lung tissue were evaluated by Western Blot, and the inflammatory factors in lung tissue were detected by ELISA. RESULTS: After four hours of mechanical ventilation, mice with ventilator-induced lung injury showed significant increases in lung wet/dry ratio, tissue damage scores, and protein content in bronchoalveolar lavage fluid. Pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α) and TLR4/NF-κB expression levels in the lung were also markedly elevated (P < 0.05). Conversely, ST36 acupuncture point pre-treatment significantly reduced these parameters (P < 0.05). CONCLUSION: EA pretreatment at ST36 could alleviate the inflammatory response for VILI via inhibiting TLR4/NF- κB pathway.


Subject(s)
Electroacupuncture , Ventilator-Induced Lung Injury , Animals , Mice , NF-kappa B , Toll-Like Receptor 4 , Signal Transduction
16.
Arch Gynecol Obstet ; 310(2): 855-861, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38280055

ABSTRACT

OBJECTIVE: This study aims to assess the feasibility and effectiveness of color doppler flow imaging (CDFI) technology and the Slow Flow HD imaging technique in identifying fetal pulmonary veins (PVs) in the first trimester (11-13 + 6 weeks), and further explore the factors affecting fetal pulmonary vein identification in early pregnancy. METHODS: Echocardiography and scanning of PVs were performed in 240 normal singleton fetuses in early pregnancy by using CDFI and slow flow HD techniques, to compare the ability of two methods to identify the PVs. Slow Flow HD technology was used to further investigate the difference of PVs identification at different gestational ages [group I (11-11 + 6 weeks), group II (12-12 + 6 weeks), group III (13-13 + 6 weeks)] and with different maternal body mass indices (BMI) (≥ 25 and < 25). In 31 cases of 240 fetuses, transvaginal ultrasonography was added due to maternal habitus or significant retroversion of the uterus, and the difference in PVs identification between transabdominal and transvaginal examination was analyzed. RESULTS: Successful PVs identification rates via CDFI and Slow Flow HD were 32.0% and 88.3%, respectively (p < 0.05). The identification rate of at least one and two pulmonary veins in Slow Flow HD was 88.3% and 76.2%, and all four pulmonary veins in 11.6% (p < 0.05). The identification rate of group I, II and III were 76.4%, 88.9% and 96.0%, respectively. The identification rate was 45.1% in the transabdominal ultrasound group and 83.8% in the transvaginal ultrasound group. The identification rate was 62.5% in the BMI ≥ 25 group and 94.7% in the BMI < 25 group (p < 0.05). CONCLUSIONS: Slow Flow HD can detect PVs in early pregnancy more often than using CDFI. Slow Flow HD is a feasible and effective imaging technique for evaluating PVs in early pregnancy.


Subject(s)
Feasibility Studies , Pregnancy Trimester, First , Pulmonary Veins , Ultrasonography, Doppler, Color , Ultrasonography, Prenatal , Humans , Female , Pregnancy , Adult , Ultrasonography, Prenatal/methods , Pulmonary Veins/diagnostic imaging , Gestational Age , Body Mass Index
17.
Int J Mol Sci ; 25(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38203732

ABSTRACT

Despite Bacillus species having been extensively utilized in the food industry and biocontrol as part of probiotic preparations, limited knowledge exists regarding their impact on intestinal disorders. In this study, we investigated the effect of Bacillus licheniformis ZW3 (ZW3), a potential probiotic isolated from camel feces, on dextran sulfate sodium (DSS)-induced colitis. The results showed ZW3 partially mitigated body weight loss, disease activity index (DAI), colon shortening, and suppressed immune response in colitis mice, as evidenced by the reduction in the levels of the inflammatory markers IL-1ß, TNF-α, and IL-6 (p < 0.05). ZW3 was found to ameliorate DSS-induced dysfunction of the colonic barrier by enhancing mucin 2 (MUC2), zonula occluden-1 (ZO-1), and occludin. Furthermore, enriched beneficial bacteria Lachnospiraceae_NK4A136_group and decreased harmful bacteria Escherichia-Shigella revealed that ZW3 improved the imbalanced gut microbiota. Abnormally elevated uric acid levels in colitis were further normalized upon ZW3 supplementation. Overall, this study emphasized the protective effects of ZW3 in colitis mice as well as some potential applications in the management of inflammation-related diseases.


Subject(s)
Bacillus licheniformis , Bacillus , Colitis , Probiotics , Animals , Mice , Colitis/chemically induced , Colitis/therapy , Camelus , Homeostasis , Probiotics/pharmacology , Probiotics/therapeutic use
18.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338477

ABSTRACT

The photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) complex of [Ru(bpy)(L)2](PF6)2Ru1 {bpy and L stand for 2,2'-bipyridine and 1-phenyl-2-(4-vinylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline respectively}, polyRu1, as a working electrode performed both efficient in situ synthesis of hydrogen peroxide and photocurrent generation/switching. Specifically, when biased at -0.4 V vs. saturated calomel electrode and illuminated with 100 mW·cm-2 white light, the PEC showed a significant cathodic photocurrent density of 9.64 µA·cm-2. Furthermore, an increase in the concentrations of quinhydrone in the electrolyte solution enabled the photocurrent polarity to switch from cathodic to anodic, and the anodic photocurrent density reached as high as 11.4 µA·cm-2. Interestingly, in this single-compartment PEC, the hydrogen peroxide yield reached 2.63 µmol·cm-2 in the neutral electrolyte solution. This study will serve as a guide for the design of high-efficiency metal-complex-based molecular systems performing photoelectric conversion/switching and photoelectrochemical oxygen reduction to hydrogen peroxide.

19.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893317

ABSTRACT

Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.

20.
J Neurosci ; 2022 May 27.
Article in English | MEDLINE | ID: mdl-35623885

ABSTRACT

Zn2+ is an important contributor to ischemic brain injury and recent studies support the hypothesis that mitochondria are key sites of its injurious effects. In murine hippocampal slices (both sexes) subjected to oxygen glucose deprivation (OGD), we found that Zn2+ accumulation and its entry into mitochondria precedes and contributes to the induction of acute neuronal death. In addition, if the ischemic episode is short (and sublethal), there is ongoing Zn2+ accumulation in CA1 mitochondria after OGD that may contribute to their delayed dysfunction. Using this slice model of sublethal OGD, we have now examined Zn2+ contributions to the progression of changes evoked by OGD and occurring over 4-5 hours. We detected progressive mitochondrial depolarization occurring from ∼ 2 hours after ischemia, a large increase in spontaneous synaptic activity between 2-3 hours, and mitochondrial swelling and fragmentation at 4 hours. Blockade of the primary route for Zn2+ entry, the mitochondrial Ca2+ uniporter (MCU; with ruthenium red, RR) or Zn2+ chelation shortly after OGD withdrawal substantially attenuated the mitochondrial depolarization and the changes in synaptic activity. RR also largely reversed the mitochondrial swelling. Finally, using an in vivo rat (male) asphyxial cardiac arrest (CA) model of transient global ischemia, we found that ∼8 min asphyxia induces considerable injury of CA1 neurons 4 hours later that is associated with strong Zn2+ accumulation within many damaged mitochondria. These effects were substantially attenuated by infusion of RR upon reperfusion. Our findings highlight mitochondrial Zn2+ accumulation after ischemia as a possible target for neuroprotective therapy.SIGNIFICANCE STATEMENT:Brain ischemia is a leading cause of mortality and long-term disability that still lacks effective treatment. After transient ischemia delayed death of neurons occurs in vulnerable brain regions. There is a critical need to understand mechanisms of this delayed neurodegeneration which can be targeted for neuroprotection. We found progressive and long-lasting mitochondrial Zn2+ accumulation to occur in highly vulnerable CA1 neurons after ischemia. Here we demonstrate that this Zn2+ accumulation contributes strongly to deleterious events occurring after ischemia including mitochondrial dysfunction, swelling and structural changes. We suggest that this mitochondrial Zn2+ entry may constitute a promising target for development of therapeutic interventions to be delivered after termination of an episode of transient global ischemia.

SELECTION OF CITATIONS
SEARCH DETAIL