Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Cell Mol Med ; 28(7): e18212, 2024 04.
Article in English | MEDLINE | ID: mdl-38516826

ABSTRACT

SBFI26, an inhibitor of FABP5, has been shown to suppress the proliferation and metastasis of tumour cells. However, the underlying mechanism by which SBFI26 induces ferroptosis in breast cancer cells remains largely unknown. Three breast cancer cell lines were treated with SBFI26 and CCK-8 assessed cytotoxicity. Transcriptome was performed on the Illumina platform and verified by qPCR. Western blot evaluated protein levels. Malondialdehyde (MDA), total superoxide dismutase (T-SOD), Fe, glutathione (GSH) and oxidized glutathione (GSSG) were measured. SBFI26 induced cell death time- and dose-dependent, with a more significant inhibitory effect on MDA-MB-231 cells. Fer-1, GSH and Vitamin C attenuated the effects but not erastin. RNA-Seq analysis revealed that SBFI26 treatment significantly enriched differentially expressed genes related to ferroptosis. Furthermore, SBFI26 increased intracellular MDA, iron ion, and GSSG levels while decreasing T-SOD, total glutathione (T-GSH), and GSH levels.SBFI26 dose-dependently up-regulates the expression of HMOX1 and ALOX12 at both gene and protein levels, promoting ferroptosis. Similarly, it significantly increases the expression of SAT1, ALOX5, ALOX15, ALOXE3 and CHAC1 that, promoting ferroptosis while downregulating the NFE2L2 gene and protein that inhibit ferroptosis. SBFI26 leads to cellular accumulation of fatty acids, which triggers excess ferrous ions and subsequent lipid peroxidation for inducing ferroptosis.


Subject(s)
Ferroptosis , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Glutathione Disulfide , Ferroptosis/genetics , Lipid Peroxidation , Glutathione , Iron , Superoxide Dismutase/genetics , Reactive Oxygen Species , Fatty Acid-Binding Proteins
2.
BMC Nephrol ; 25(1): 2, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172769

ABSTRACT

BACKGROUND: The current state of knowledge regarding the efficacy of whole-body vibration (WBV) training for individuals with chronic kidney disease (CKD) is limited. To address this gap, the present study seeks to undertake a comprehensive systematic review and meta-analysis of clinical trials to evaluate the impact of WBV on physical function and quality of life outcomes in CKD patients. METHODS: A systematic search was performed on the PubMed, Embase, Web of Science, and Scopus databases from inception to March 2023 and updated in June 2023. The inclusion criteria comprised randomized controlled studies, quasi-experimental studies, and single-arm trials that evaluated the impact of WBV on physical function, encompassing cardiopulmonary fitness, muscle strength, mobility, and balance, in CKD patients. Adverse events that were included in the study reports were recorded. The pooled evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method. RESULTS: Nine studies were identified, of which seven were included in the meta-analysis. The results of the meta-analysis indicated a statistically significant improvement in upper (mean difference: 3.45 kg; 95% confidence interval 1.61 to 5.29) and lower (standardized mean difference: 0.34, 95% confidence interval 0.08 to 0.59) extremity muscle strength in patients with CKD who underwent WBV training compared to baseline (low-level evidence). Furthermore, WBV training favored improved cardiorespiratory fitness, mobility, and balance function, but no statistical difference was observed. The impact of WBV training on quality of life in patients with CKD requires further validation. Notably, only one adverse event (nausea) was reported in the included studies. CONCLUSIONS: WBV has demonstrated efficacy and feasibility in enhancing muscle strength among patients with CKD. However, further investigation is warranted to determine its potential for improving cardiorespiratory adaptations, mobility, balance function, and quality of life. Additionally, future research should prioritize comprehensive reporting of WBV protocols to establish an optimal training regimen for the CKD population.


Subject(s)
Quality of Life , Renal Insufficiency, Chronic , Humans , Vibration/therapeutic use , Exercise , Exercise Therapy/methods , Renal Insufficiency, Chronic/therapy
3.
Article in English | MEDLINE | ID: mdl-38153832

ABSTRACT

In the process of rehabilitation treatment for stroke patients, rehabilitation evaluation is a significant part in rehabilitation medicine. Researchers intellectualized the evaluation of rehabilitation evaluation methods and proposed quantitative evaluation methods based on evaluation scales, without the clinical background of physiatrist. However, in clinical practice, the experience of physiatrist plays an important role in the rehabilitation evaluation of patients. Therefore, this paper designs a 5 degrees of freedom (DoFs) upper limb (UL) rehabilitation robot and proposes a rehabilitation evaluation model based on Belief Rule Base (BRB) which can add the expert knowledge of physiatrist to the rehabilitation evaluation. The motion data of stroke patients during active training are collected by the rehabilitation robot and signal collection system, and then the upper limb motor function of the patients is evaluated by the rehabilitation evaluation model. To verify the accuracy of the proposed method, Back Propagation Neural Network (BPNN) and Support Vector Machines (SVM) are used to evaluate. Comparative analysis shows that the BRB model has high accuracy and effectiveness among the three evaluation models. The results show that the rehabilitation evaluation model of stroke patients based on BRB could help physiatrists to evaluate the UL motor function of patients and master the rehabilitation status of stroke patients.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Humans , Stroke Rehabilitation/methods , Upper Extremity , Robotics/methods , Paresis/rehabilitation , Recovery of Function
4.
Acta Pharm Sin B ; 14(7): 3184-3204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027245

ABSTRACT

Helicobacter pylori (H. pylori) infection remains the leading cause of gastric adenocarcinoma, and its eradication primarily relies on the prolonged and intensive use of two antibiotics. However, antibiotic resistance has become a compelling health issue, leading to H. pylori eradication treatment failure worldwide. Additionally, the powerlessness of antibiotics against biofilms, as well as intracellular H. pylori and the long-term damage of antibiotics to the intestinal microbiota, have also created an urgent demand for antibiotic-free approaches. Herein, we describe an antibiotic-free, multifunctional copper-organic framework (HKUST-1) platform encased in a lipid layer comprising phosphatidic acid (PA), rhamnolipid (RHL), and cholesterol (CHOL), enveloped in chitosan (CS), and loaded in an ascorbyl palmitate (AP) hydrogel: AP@CS@Lip@HKUST-1. This platform targets inflammatory sites where H. pylori aggregates through electrostatic attraction. Then, hydrolysis by matrix metalloproteinases (MMPs) releases CS-encased nanoparticles, disrupting bacterial urease activity and membrane integrity. Additionally, RHL disperses biofilms, while PA promotes lysosomal acidification and activates host autophagy, enabling clearance of intracellular H. pylori. Furthermore, AP@CS@Lip@HKUST-1 alleviates inflammation and enhances mucosal repair through delayed Cu2+ release while preserving the intestinal microbiota. Collectively, this platform presents an advanced therapeutic strategy for eradicating persistent H. pylori infection without inducing drug resistance.

5.
Adv Healthc Mater ; 13(16): e2304060, 2024 06.
Article in English | MEDLINE | ID: mdl-38429938

ABSTRACT

Surgical resection of bone tumors is the primary approach employed in the treatment of bone cancer. Simultaneously, perioperative interventions, particularly postoperative adjuvant anticancer strategies, play a crucial role in achieving satisfactory therapeutic outcomes. However, the occurrence of postoperative bone tumor recurrence, metastasis, extensive bone defects, and infection are significant risks that can result in unfavorable prognoses or even treatment failure. In recent years, there has been significant progress in the development of biomaterials, leading to the emergence of new treatment options for bone tumor therapy and bone regeneration. This progress report aims to comprehensively analyze the strategic development of unique therapeutic biomaterials with inherent healing properties and bioactive capabilities for bone tissue regeneration. These composite biomaterials, classified into metallic, inorganic non-metallic, and organic types, are thoroughly investigated for their responses to external stimuli such as light or magnetic fields, internal interventions including chemotherapy or catalytic therapy, and combination therapy, as well as their role in bone regeneration. Additionally, an overview of self-healing materials for osteogenesis is provided and their potential applications in combating osteosarcoma and promoting bone formation are explored. Furthermore, the safety concerns of integrated materials and current limitations are addressed, while also discussing the challenges and future prospects.


Subject(s)
Biocompatible Materials , Bone Neoplasms , Bone Regeneration , Humans , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Regeneration/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Biocompatible Materials/pharmacology , Animals , Osteosarcoma/pathology , Osteogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL