Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 804
Filter
Add more filters

Publication year range
1.
Cell ; 184(21): 5391-5404.e17, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597584

ABSTRACT

Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.


Subject(s)
Calcium/metabolism , Free Radical Scavengers/metabolism , Fungal Proteins/metabolism , Oryza/immunology , Plant Immunity , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Disease Resistance/genetics , Models, Biological , Oryza/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Protein Binding , Protein Stability , Reproduction , Species Specificity , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Zea mays/immunology
2.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32970989

ABSTRACT

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Subject(s)
Betacoronavirus/physiology , Heparitin Sulfate/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Binding Sites , COVID-19 , Cell Line , Coronavirus Infections/pathology , Coronavirus Infections/virology , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/chemistry , Humans , Kidney/metabolism , Lung/metabolism , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
3.
Mol Cell ; 82(15): 2871-2884.e6, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35809572

ABSTRACT

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.


Subject(s)
HIV-1 , Capsid/metabolism , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HIV-1/genetics , Humans , Immunity, Innate , Nucleotidyltransferases/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism
4.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33930332

ABSTRACT

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
Antigens, CD/genetics , Host-Pathogen Interactions/genetics , Interferon Regulatory Factors/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Golgi Apparatus/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/classification , Interferon Regulatory Factors/immunology , Interferon Type I/immunology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization , Virus Release/genetics , Virus Release/immunology , Virus Replication/genetics , Virus Replication/immunology
5.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: mdl-33727703

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
6.
Mol Cell ; 74(5): 996-1009.e7, 2019 06 06.
Article in English | MEDLINE | ID: mdl-30975460

ABSTRACT

Nucleotide-binding site leucine-rich repeat (NLR) receptors perceive pathogen effectors and trigger plant immunity. However, the mechanisms underlying NLR-triggered defense responses remain obscure. The recently discovered Pigm locus in rice encodes a cluster of NLRs, including PigmR, which confers broad-spectrum resistance to blast fungus. Here, we identify PIBP1 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 1), an RRM (RNA-recognition motif) protein that specifically interacts with PigmR and other similar NLRs to trigger blast resistance. PigmR-promoted nuclear accumulation of PIBP1 ensures full blast resistance. We find that PIBP1 and a homolog, Os06 g02240, bind DNA and function as unconventional transcription factors at the promoters of the defense genes OsWAK14 and OsPAL1, activating their expression. Knockout of PIBP1 and Os06 g02240 greatly attenuated blast resistance. Collectively, our study discovers previously unappreciated RRM transcription factors that directly interact with NLRs to activate plant defense, establishing a direct link between transcriptional activation of immune responses with NLR-mediated pathogen perception.


Subject(s)
Disease Resistance/genetics , NLR Proteins/genetics , Oryza/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Binding Sites , Fungi/pathogenicity , Gene Expression Regulation, Plant , Oryza/microbiology , Plant Diseases/microbiology , Plant Immunity/genetics , Promoter Regions, Genetic , Protein Binding/genetics , Signal Transduction/genetics
7.
Nature ; 586(7827): 113-119, 2020 10.
Article in English | MEDLINE | ID: mdl-32707573

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Subject(s)
Antiviral Agents/analysis , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drug Evaluation, Preclinical , Drug Repositioning , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/drug effects , Betacoronavirus/growth & development , COVID-19 , Cell Line , Cysteine Proteinase Inhibitors/analysis , Cysteine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation/drug effects , Humans , Hydrazones , Induced Pluripotent Stem Cells/cytology , Models, Biological , Morpholines/analysis , Morpholines/pharmacology , Pandemics , Pyrimidines , Reproducibility of Results , SARS-CoV-2 , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Triazines/analysis , Triazines/pharmacology , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
8.
Gastroenterology ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38582270

ABSTRACT

BACKGROUND AND AIMS: Hepatitis E virus (HEV), primarily genotype 1 (HEV-1), causes approximately 20.1 million infections, 44,000 deaths, and 3000 stillbirths annually. Current evidence indicates that HEV-1 is only transmitted in humans. Here, we evaluated whether Mongolian gerbils can serve as animal models for HEV-1 infection. METHODS: Mongolian gerbils were used for HEV-1 and hepatitis E virus genotype 3 infection experiments. HEV infection parameters, including detection of HEV RNA and HEV antigen, liver function assessment, and histopathology, were evaluated. RESULTS: We adapted a clinical isolate of HEV-1 for Mongolian gerbils by serial passaging in feces of aged male gerbils. The gerbil-adapted strain obtained at passage 3 induced a robust, acute HEV infection, characterized by stable fecal virus shedding, elevated liver enzymes, histopathologic changes in the liver, and seroconversion to anti-HEV. An infectious complementary DNA clone of the adapted virus was generated. HEV-1-infected pregnant gerbils showed a high rate of maternal mortality and vertical transmission. HEV RNA or antigens were detected in the liver, kidney, intestine, placenta, testis, and fetus liver. Liver and placental transcriptomic analyses indicated activation of host immunity. Tacrolimus prolonged HEV-1 infection, whereas ribavirin cleared infection. The protective efficacy of a licensed HEV vaccine was validated using this model. CONCLUSIONS: HEV-1 efficiently infected Mongolian gerbils. This HEV-1 infection model will be valuable for investigating hepatitis E immunopathogenesis and evaluating vaccines and antivirals against HEV.

9.
J Virol ; : e0084624, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899900

ABSTRACT

Chronic hepatitis E mostly occurs in organ transplant recipients and can lead to rapid liver fibrosis and cirrhosis. Previous studies found that the development of chronic hepatitis E virus (HEV) infection is linked to the type of immunosuppressant used. Animal models are crucial for the study of pathogenesis of chronic hepatitis E. We previously established a stable chronic HEV infection rabbit model using cyclosporine A (CsA), a calcineurin inhibitor (CNI)-based immunosuppressant. However, the immunosuppression strategy and timing may be optimized, and how different types of immunosuppressants affect the establishment of chronic HEV infection in this model is still unknown. Here, we showed that chronic HEV infection can be established in 100% of rabbits when CsA treatment was started at HEV challenge or even 4 weeks after. Tacrolimus or prednisolone treatment alone also contributed to chronic HEV infection, resulting in 100% and 77.8% chronicity rates, respectively, while mycophenolate mofetil (MMF) only led to a 28.6% chronicity rate. Chronic HEV infection was accompanied with a persistent activation of innate immune response evidenced by transcriptome analysis. The suppressed adaptive immune response evidenced by low expression of genes related to cytotoxicity (like perforin and FasL) and low anti-HEV seroconversion rates may play important roles in causing chronic HEV infection. By analyzing HEV antigen concentrations with different infection outcomes, we also found that HEV antigen levels could indicate chronic HEV infection development. This study optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits and highlighted the potential association between the development of chronic HEV infection and immunosuppressants.IMPORTANCEOrgan transplant recipients are at high risk of chronic hepatitis E and generally receive a CNI-based immunosuppression regimen containing CNI (tacrolimus or CsA), MMF, and/or corticosteroids. Previously, we established stable chronic HEV infection in a rabbit model by using CsA before HEV challenge. In this study, we further optimized the immunosuppression strategies for establishing chronic HEV infection in rabbits. Chronic HEV infection can also be established when CsA treatment was started at the same time or even 4 weeks after HEV challenge, clearly indicating the risk of progression to chronic infection under these circumstances and the necessity of HEV screening for both the recipient and the donor preoperatively. CsA, tacrolimus, or prednisolone instead of MMF significantly contributed to chronic HEV infection. HEV antigen in acute infection phase indicates the development of chronic infection. Our results have important implications for understanding the potential association between chronic HEV infection and immunosuppressants.

10.
PLoS Biol ; 20(11): e3001845, 2022 11.
Article in English | MEDLINE | ID: mdl-36327326

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was rapidly declared a pandemic by the World Health Organization (WHO). Early clinical symptomatology focused mainly on respiratory illnesses. However, a variety of neurological manifestations in both adults and newborns are now well-documented. To experimentally determine whether SARS-CoV-2 could replicate in and affect human brain cells, we infected iPSC-derived human brain organoids. Here, we show that SARS-CoV-2 can productively replicate and promote death of neural cells, including cortical neurons. This phenotype was accompanied by loss of excitatory synapses in neurons. Notably, we found that the U.S. Food and Drug Administration (FDA)-approved antiviral Sofosbuvir was able to inhibit SARS-CoV-2 replication and rescued these neuronal alterations in infected brain organoids. Given the urgent need for readily available antivirals, these results provide a cellular basis supporting repurposed antivirals as a strategic treatment to alleviate neurocytological defects that may underlie COVID-19- related neurological symptoms.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Infant, Newborn , Humans , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Organoids , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Brain , Cell Death , Synapses
12.
Nano Lett ; 24(6): 1859-1866, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38289656

ABSTRACT

Afterglow materials with time-dependent color output emerge as huge prospects in advanced optical information encryption but remain a formidable challenge due to the limited exciton transfer from a single emission center. Here, multiple time-dependent afterglow color evolutions are achieved by the strategy of controllable assembly of dual carbon dots (CDs) with an individual afterglow color and decay rate into an RHO zeolite. The strategy possesses high controllability such that B-CDs and G-CDs can be independently generated and in situ embedded into a matrix; in particular, the doped amount of two kinds of CDs can be adjusted conveniently to produce interesting variable afterglow colors. Triggered by different excitations, the prepared B&G-CDs@RHO composites exhibit the conversion of TADF and RTP behaviors, as well as time-dependent afterglow color output from deep-blue to green (365 nm excitation) and static cyan (254 nm excitation). The unique luminescence and excellent stability allow the composite applied in information encryption with high-security levels.

13.
Int J Cancer ; 154(12): 2090-2105, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38375919

ABSTRACT

Previous studies have investigated the association between reproductive factors and lung cancer risk; however, findings have been inconsistent. In order to assess this association among Asian women, a total of 308,949 female participants from 11 prospective cohorts and four Asian countries (Japan, Korea, China, and Singapore) were included. Cox proportional hazards regression models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CIs). A total of 3,119 primary lung cancer cases and 2247 lung cancer deaths were identified with a mean follow-up of 16.4 years. Parous women had a lower risk of lung cancer incidence and mortality as compared with nulliparous women, with HRs of 0.82 (95% CI = 0.70-0.96) and 0.78 (95% CI = 0.65-0.94). The protective association of parity and lung cancer incidence was greater among ever-smokers (HR = 0.66, 95% CI = 0.49-0.87) than in never-smokers (HR = 0.90, 95% CI = 0.74-1.09) (P-interaction = 0.029). Compared with age at first delivery ≤20 years, older age at first delivery (21-25, ≥26 years) was associated with a lower risk of lung cancer incidence and mortality. Women who ever used hormone replacements had a higher likelihood of developing non-small cell lung cancer (HR = 1.31, 95% CI = 1.02-1.68), compared to those who never used hormone replacements. Future studies are needed to assess the underlying mechanisms, the relationships within these female reproductive factors, and the potential changes in smoking habits over time.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pregnancy , Female , Humans , Incidence , Prospective Studies , Lung Neoplasms/epidemiology , Asia/epidemiology , Hormones , Risk Factors , Proportional Hazards Models
14.
Funct Integr Genomics ; 24(1): 30, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358412

ABSTRACT

LTBP1 is closely related to TGF-ß1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-ß and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Prognosis , Epithelial-Mesenchymal Transition , Cell Line , Lymphatic Metastasis , Tumor Microenvironment , Latent TGF-beta Binding Proteins/genetics
15.
J Antimicrob Chemother ; 79(4): 758-766, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38340039

ABSTRACT

OBJECTIVES: To compare the differences in antibiotic use between COPD and non-COPD residents, and to explore the effect of COPD on antibiotic use. METHODS: Participants aged 40 years old or over from the Songjiang Adult Cohort were included. Information on prescription and baseline survey was collected based on the health information system. A logit-negative binomial Hurdle model was used to explore correlations between COPD and percentage of antibiotic use and average rate of antibiotic prescribing of different types of antibiotic. Multinomial logistic regression was used to assess the association between COPD and antimicrobial combination therapy and routes of administration. RESULTS: A total of 34576 individuals were included and 1594 (4.6%) were COPD patients. During the 6 years' follow-up, the percentage of antibiotic use for COPD patients was 98.4%, which was 7.88 (95%CI: 5.24-11.85) times of that for non-COPD patients after adjusting for potential confounders. The prescribing rate was 3220 prescriptions (95%CI: 3063.6-3385.2) per 1000 person-years for COPD patients, which was 1.96 (95%CI: 1.87-2.06) times of that for non-COPD patients. Other beta-lactam antibacterials, Macrolides, lincosamides and streptogramins, and quinolone antibacterials were the most commonly used types of antibiotic. Except for aminoglycoside antibacterials, both percentage of antibiotic use and rate of antibiotic prescription were increased in COPD patients. COPD patients were more likely to be prescribed a maximum of two antibiotics (OR=1.34, 95%CI: 1.20-1.50); and were more likely to use antibiotics intravenously (OR=2.77, 95%CI: 2.47-3.11). CONCLUSION: COPD patients were more likely to have increased antibiotic use in a large-scale population-based adult cohort, suggesting COPD patients are a high-priority group for the management of antibiotic use in communities.


Subject(s)
Health Information Systems , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Anti-Bacterial Agents/therapeutic use , Streptogramins , Drug Prescriptions , Pulmonary Disease, Chronic Obstructive/drug therapy , Practice Patterns, Physicians'
16.
Plant Physiol ; 192(1): 154-169, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36721922

ABSTRACT

Flowering transition is tightly coordinated by complex gene regulatory networks, in which AGAMOUS-LIKE 16 (AGL16) plays important roles. Here, we identified the molecular function and binding properties of AGL16 and demonstrated its partial dependency on the SUPPRESSOR OF CONSTANS 1 (SOC1) function in regulating flowering. AGL16 bound to promoters of more than 2,000 genes via CArG-box motifs with high similarity to that of SOC1 in Arabidopsis (Arabidopsis thaliana). Approximately 70 flowering genes involved in multiple pathways were potential targets of AGL16. AGL16 formed a protein complex with SOC1 and shared a common set of targets. Intriguingly, only a limited number of genes were differentially expressed in the agl16-1 loss-of-function mutant. However, in the soc1-2 knockout background, AGL16 repressed and activated the expression of 375 and 182 genes, respectively, with more than a quarter bound by AGL16. Corroborating these findings, AGL16 repressed the flowering time more strongly in soc1-2 than in the Col-0 background. These data identify a partial inter-dependency between AGL16 and SOC1 in regulating genome-wide gene expression and flowering time, while AGL16 provides a feedback regulation on SOC1 expression. Our study sheds light on the complex background dependency of AGL16 in flowering regulation, thus providing additional insights into the molecular coordination of development and environmental adaptation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Flowers
17.
FASEB J ; 37(12): e23304, 2023 12.
Article in English | MEDLINE | ID: mdl-37971426

ABSTRACT

The phosphatase and tensin congeners (Pten) gene affects cell growth, cell proliferation, and rearrangement of connections, and it is closely related to cellular senescence, but it remains unclear the role of muscle-Pten gene in exercise against age-related deterioration in skeletal muscle and mortality induced by a high-salt diet (HSD). In here, overexpression and knockdown of muscle Pten gene were constructed by building MhcGAL4 /PtenUAS-overexpression and MhcGAL4 /PtenUAS-RNAi system in flies, and flies were given exercise training and a HSD for 2 weeks. The results showed that muscle Pten knockdown significantly reduced the climbing speed, climbing endurance, GPX activity, and the expression of Pten, Sirt1, PGC-1α genes, and it significantly increased the expression of Akt and ROS level, and impaired myofibril and mitochondria of aged skeletal muscle. Pten knockdown prevented exercise from countering the HSD-induced age-related deterioration of skeletal muscle. Pten overexpression has the opposite effect on skeletal muscle aging when compared to it knockdown, and it promoted exercise against HSD-induced age-related deterioration of skeletal muscle. Pten overexpression significantly increased lifespan, but its knockdown significantly decreased lifespan of flies. Thus, current results confirmed that differential expression of muscle Pten gene played an important role in regulating skeletal muscle aging and lifespan, and it also affected the adaptability of aging skeletal muscle to physical exercise since it determined the activity of muscle Pten/Akt pathway and Pten/Sirt1/PGC-1α pathway.


Subject(s)
Physical Conditioning, Animal , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Drosophila/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Diet , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
18.
FASEB J ; 37(11): e23214, 2023 11.
Article in English | MEDLINE | ID: mdl-37773768

ABSTRACT

Atg2 is a key gene in autophagy formation and plays an important role in regulating aging progress. Exercise is an important tool to resist oxidative stress in cells and delay muscle aging. However, the relationship between exercise and the muscle Atg2 gene in regulating skeletal muscle aging remains unclear. Here, overexpression or knockdown of muscle Atg2 gene was achieved by constructing the AtgUAS/MhcGal4 system in Drosophila, and these flies were also subjected to an exercise intervention for 2 weeks. The results showed that both overexpression of Atg2 and exercise significantly increased the climbing speed, climbing endurance, cardiac function, and lifespan of aging flies. They also significantly up-regulated the expression of muscle Atg2, AMPK, Sirt1, and PGC-1α genes, and they significantly reduced muscle malondialdehyde and triglyceride. These positive benefits were even more pronounced when the two were combined. However, the effects of Atg2 knockdown on skeletal muscle, heart, and lifespan were reversed compared to its overexpression. Importantly, exercise ameliorated age-related changes induced by Atg2 knockdown. Therefore, current results confirmed that both overexpression of muscle Atg2 and exercise delayed age-related deteriorations of skeletal muscle, the heart function, and lifespan, and exercise could also reverse age-related changes induced by Atg2 knockdown. The molecular mechanism is related to the overexpression of the Atg2 gene and exercise, which increase the activity of the AMPK/Sirt1/PGC-1α pathway, oxidation and antioxidant balance, and lipid metabolism in aging muscle.


Subject(s)
Drosophila Proteins , Physical Conditioning, Animal , Animals , Male , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Drosophila/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Exercise Therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Autophagy-Related Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
19.
Phys Chem Chem Phys ; 26(3): 1929-1935, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38115787

ABSTRACT

High-purity 1T'-WS2 film has been experimentally synthesized [Nature Materials, 20, 1113-1120 (2021)] and theoretically predicted to be a two-dimensional (2D) superconducting material with Dirac cones [arXiv:2301.11425]. In the present work, we further study the superconducting properties of monolayer 1T'-WS2 by applying biaxial tensile strain. It is shown that the superconducting critical temperature Tc firstly increases and then decreases with respect to tensile strains, with the highest superconducting critical temperature Tc of 7.25 K under the biaxial tensile strain of 3%. In particular, we find that Dirac cones also exist in several tensile strained cases. Our studies show that monolayer 1T'-WS2 may provide a good platform for understanding the superconductivity of 2D Dirac materials.

20.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734756

ABSTRACT

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Subject(s)
Chaetomium , Histone Deacetylases , Multigene Family , Polyketides , Secondary Metabolism , Chaetomium/genetics , Chaetomium/enzymology , Chaetomium/metabolism , Secondary Metabolism/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Polyketides/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Biosynthetic Pathways/genetics , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL