Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.092
Filter
Add more filters

Publication year range
1.
Mol Cell ; 75(6): 1188-1202.e11, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31399345

ABSTRACT

The maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment is converted to an environment of embryonic-driven development through dramatic reprogramming. However, how maternally supplied transcripts are dynamically regulated during MZT remains largely unknown. Herein, through genome-wide profiling of RNA 5-methylcytosine (m5C) modification in zebrafish early embryos, we found that m5C-modified maternal mRNAs display higher stability than non-m5C-modified mRNAs during MZT. We discovered that Y-box binding protein 1 (Ybx1) preferentially recognizes m5C-modified mRNAs through π-π interactions with a key residue, Trp45, in Ybx1's cold shock domain (CSD), which plays essential roles in maternal mRNA stability and early embryogenesis of zebrafish. Together with the mRNA stabilizer Pabpc1a, Ybx1 promotes the stability of its target mRNAs in an m5C-dependent manner. Our study demonstrates an unexpected mechanism of RNA m5C-regulated maternal mRNA stabilization during zebrafish MZT, highlighting the critical role of m5C mRNA modification in early development.


Subject(s)
5-Methylcytosine/metabolism , Embryo, Nonmammalian/embryology , Embryonic Development/physiology , RNA Stability/physiology , RNA, Messenger, Stored/metabolism , Zebrafish/embryology , Animals , HeLa Cells , Humans , Mice , RNA, Messenger, Stored/genetics , Zebrafish/genetics
2.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38457518

ABSTRACT

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Subject(s)
Cyanobacteria , Nitrate Transporters , Nitrates/metabolism , Bacterial Proteins/metabolism , Allosteric Regulation , Cryoelectron Microscopy , Cyanobacteria/metabolism , Adenosine Triphosphate/metabolism , Nitrogen/metabolism , Carbon/metabolism , PII Nitrogen Regulatory Proteins/genetics , PII Nitrogen Regulatory Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 120(4): e2213727120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656854

ABSTRACT

The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.


Subject(s)
Myoviridae , Virus Assembly , Bacteriophage T4/chemistry , Capsid , Capsid Proteins/chemistry , Cryoelectron Microscopy , Myoviridae/chemistry
4.
PLoS Biol ; 20(4): e3001619, 2022 04.
Article in English | MEDLINE | ID: mdl-35476671

ABSTRACT

Skeletal muscle regeneration is essential for maintaining muscle function in injury and muscular disease. Myogenesis plays key roles in forming new myofibers during the process. Here, through bioinformatic screen for the potential regulators of myogenesis from 5 independent microarray datasets, we identify an overlapping differentially expressed gene (DEG) optineurin (OPTN). Optn knockdown (KD) delays muscle regeneration in mice and impairs C2C12 myoblast differentiation without affecting their proliferation. Conversely, Optn overexpression (OE) promotes myoblast differentiation. Mechanistically, OPTN increases nuclear levels of ß-catenin and enhances the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription activity, suggesting activation of Wnt signaling pathway. The activation is accompanied by decreased protein levels of glycogen synthase kinase 3ß (GSK3ß), a negative regulator of the pathway. We further show that OPTN physically interacts with and targets GSK3ß for autophagic degradation. Pharmacological inhibition of GSK3ß rescues the impaired myogenesis induced by Optn KD during muscle regeneration and myoblast differentiation, corroborating that GSK3ß is the downstream effector of OPTN-mediated myogenesis. Together, our study delineates the novel role of OPTN as a potential regulator of myogenesis and may open innovative therapeutic perspectives for muscle regeneration.


Subject(s)
Autophagy , Cell Cycle Proteins , Glycogen Synthase Kinase 3 beta , Membrane Transport Proteins , Muscle Development , Wnt Signaling Pathway , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Muscle Development/genetics , Muscle, Skeletal/metabolism , Wnt Signaling Pathway/genetics
5.
J Am Chem Soc ; 146(26): 18074-18082, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38906845

ABSTRACT

A cyclic thioenone system capable of controlled ring-opening polymerization (ROP) is presented that leverages a reversible Michael addition-elimination (MAE) mechanism. The cyclic thioenone monomers are easy to access and modify and for the first time incorporate the dynamic reversibility of MAE with chain-growth polymerization. This strategy features mild polymerization conditions, tunable functionalities, controlled molecular weights (Mn), and narrow dispersities. The obtained polythioenones exhibit excellent optical transparency and good mechanical properties and can be depolymerized to recover the original monomers. Density functional theory (DFT) calculations of model reactions offer insights into the role of monomer conformation in the polymerization process, as well as explaining divergent reactivity observed in seven-membered thiepane (TP) and eight-membered thiocane (TC) ring systems. Collectively, these findings demonstrate the feasibility of MAE mechanisms in ring-opening polymerization and provide important guidelines toward future monomer designs.

6.
Anal Chem ; 96(26): 10800-10808, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904228

ABSTRACT

Tumor-derived extracellular vesicles (TEVs) are rich in cellular information and hold great promise as a biomarker for noninvasive cancer diagnosis. However, accurate measurement of TEVs presents challenges due to their low abundance and potential interference from a high number of EVs derived from normal cells. Herein, an aptamer-proximity-ligation-activated rolling circle amplification (RCA) method for EV membrane recognition, coupled with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the quantification of TEVs, is developed. When DNA-labeled ultrasmall gold nanoparticle (AuNP) probes bind to the long chains formed by RCA, they aggregate to form large particles. Notably, small AuNPs scarcely produce pulse signals in sp-ICP-MS, thereby detecting TEVs in a wash-free manner. By leveraging the strong binding affinity of aptamers, dual aptamers for EpCAM and PD-L1 recognition, and the sp-ICP-MS technique, this method offers remarkable sensitivity and selectivity in tracing TEVs. Under optimized conditions, the present method shows a favorable linear relationship between the pulse signal frequency of sp-ICP-MS and TEV concentration within the range of 105-107 particles/mL, along with a detection limit of 1.1 × 104 particles/mL. The pulse signals from sp-ICP-MS combined with machine learning algorithms are used to discriminate cancer patients from healthy donors with 100% accuracy. Due to its simple and fast operation and excellent sensitivity and accuracy, this approach holds significant potential for diverse applications in life sciences and personalized medicine.


Subject(s)
Aptamers, Nucleotide , Extracellular Vesicles , Gold , Mass Spectrometry , Metal Nanoparticles , Nucleic Acid Amplification Techniques , Humans , Aptamers, Nucleotide/chemistry , Extracellular Vesicles/chemistry , Nucleic Acid Amplification Techniques/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Mass Spectrometry/methods , Neoplasms , Epithelial Cell Adhesion Molecule/metabolism , Limit of Detection
7.
Anal Chem ; 96(9): 3733-3738, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373274

ABSTRACT

Accurate detection and screening of Pb in biological samples is helpful to assess the risk associated with lead pollution to human health. However, conventional atomic spectroscopic instruments are bulky and cumbersome, requiring additional sample pretreatment equipment, and difficult to perform field analysis with. Herein, a portable point discharge (PD) microplasma-optical emission spectrometric (OES) device with online digestion function is designed for field and sensitive determination of lead in biological samples. With rice as a model, online digestion of a batch of six 50 mg samples can be achieved in the HNO3 and H2O2 system within 25 min by a temperature control and timing module. Compared to the conventional microwave digestion, the digestion efficiency of this device reaches 97%. Pb in digestion solution is converted into volatile species by hydride generation (HG) and directly introduced into PD-OES for excitation and detection by a self-designed rotatable and telescopic cutoff gas sampling column. Six samples can be successively detected in 2 min, and argon consumption of the whole process is only <800 mL. Under the optimized conditions, the detection limit of Pb is 0.018 mg kg-1 (0.9 µg L-1) and precision is 3.6%. The accuracy and practicability of the present device are verified by measuring several certified reference materials and real biological samples. By virtue of small size (23.5 × 17 × 8.5 cm3), lightweight (2.5 kg), and low energy consumption (24.3 W), the present device provides a convenient tool for field analysis of toxic elements in biological samples.


Subject(s)
Lead , Optical Devices , Humans , Hydrogen Peroxide , Spectrum Analysis/methods , Digestion
8.
Anal Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950152

ABSTRACT

Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.

9.
Anal Chem ; 96(4): 1742-1749, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38221770

ABSTRACT

Speciation analysis of arsenic in urine is essential for the studies of arsenic metabolism and biological effects, but the unstable arsenic species represented by MMAIII and DMAIII pose a huge challenge to analytical accuracy. Herein, a novel urine self-sampling (USS) kit combined with an automated preparation-sampler (APS) device is rationally designed and used for convenient analysis of arsenic metabolites by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). The subject can collect urine into a sampling vial at home and use a homemade syringe to pump argon to displace oxygen in the vial, thereby inhibiting the oxidation of MMAIII and DMAIII. After USS and transportation, the sampling vial is loaded directly onto the APS device, where the urine sample can be automatically mixed with diluent, filtered, and loaded into HPLC-ICPMS for arsenic speciation analysis under anaerobic conditions. For a single sample, the sampling time and the analysis time are <8 and <18 min, respectively. The recoveries of MMAIII and DMAIII in urine over 24 h at 4 °C are 86 and 67%, surpassing the conventional sampling method by 28 and 67%, respectively. When the APS is coupled to HPLC-ICPMS, the detection limits of AsC, iAsIII, MMAIII, DMAV, MMAV, DMAIII, and iAsV are 0.03-0.10 µg L-1 with precisions of <10%. The present method provides a convenient and reliable tool for the storage and analysis of unstable arsenic species in urine and lays the foundation for studying the metabolic and biological effects of methylated trivalent arsenicals.


Subject(s)
Arsenic , Arsenicals , Organometallic Compounds , Arsenic/analysis , Arsenicals/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods
10.
Anal Chem ; 96(18): 7155-7162, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652710

ABSTRACT

Microplastics (MPs) can act as carriers of environmental arsenic species into the stomach with food and release arsenic species during digestion, which threatens human health. Herein, an integrated dynamic stomach model (DSM)-capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS) is developed for online monitoring of the release and transformation behaviors of arsenic species loaded on MPs (As-MPs) in the simulated human stomach. The 3D-printed DSM with a soft stomach chamber enables the behaviors of gastric peristalsis, gastric and salivary fluid addition, pH adjustment, and gastric emptying (GE) to be controlled by a self-written program after oral ingestion of food with As-MPs. The gastric extract during digestion is introduced into the spiral channel to remove the large particulate impurity and online filtered to obtain the clarified arsenic-containing solution for subsequent speciation analysis of arsenic by CE-ICPMS. The digestion conditions and pretreatment processes of DSM are tracked and validated, and the release rates of As-MPs digested by DSM are compared with those digested by the static stomach model and DSM without GE. The release rate of inorganic arsenic on MPs is higher than that of organic arsenic throughout the gastric digestion process, and 8% of As(V) is reduced to As(III). The detection limits for As(III), DMA, MMA, and As(V) are 0.5-0.9 µg L-1 using DSM-CE-ICPMS, along with precisions of ≤8%. This present method provides an integrated and convenient tool for evaluating the release and transformation of As-MPs during human gastric digestion and provides a reference for exploring the interactions between MPs and metals/metalloids in the human body.


Subject(s)
Arsenic , Electrophoresis, Capillary , Mass Spectrometry , Microplastics , Stomach , Arsenic/analysis , Humans , Mass Spectrometry/methods , Electrophoresis, Capillary/methods , Microplastics/analysis , Stomach/chemistry , Digestion , Models, Biological
11.
Genome Res ; 31(7): 1150-1158, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34155038

ABSTRACT

Protein-truncating variants (PTVs) have important impacts on phenotype diversity and disease. However, their population genetics characteristics in more globally diverse populations are not well defined. Here, we describe patterns of PTVs in 1320 genes sequenced in 10,539 healthy controls and 9434 patients with psoriasis, all of Han Chinese ancestry. We identify 8720 PTVs, of which 77% are novel, and estimate 88% of all PTVs are deleterious and subject to purifying selection. Furthermore, we show that individuals with psoriasis have a significantly higher burden of PTVs compared to controls (P = 0.02). Finally, we identified 18 PTVs in 14 genes with unusually high levels of population differentiation, consistent with the action of local adaptation. Our study provides insights into patterns and consequences of PTVs.

12.
Br J Surg ; 111(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38215239

ABSTRACT

BACKGROUND: The aim of this multicentre cohort study was to compare the long-term oncological outcomes of robotic gastrectomy (RG) and laparoscopic gastrectomy (LG) for patients with gastric cancer. METHODS: Patients with gastric cancer who underwent radical gastrectomy by robotic or laparoscopic approaches from 1 March 2010 to 31 December 2018 at 10 high-volume centres in China were selected from institutional databases. Patients receiving RG were matched 1 : 1 by propensity score with patients undergoing LG. The primary outcome was 3-year disease-free survival. Secondary outcomes were overall survival and disease recurrence. RESULTS: Some 2055 patients who underwent RG and 4309 patients who had LG were included. The propensity score-matched cohort comprised 2026 RGs and 2026 LGs. Median follow-up was 41 (i.q.r. 39-58) months for the RG group and 39 (38-56) months for the LG group. The 3-year disease-free survival rates were 80.8% in the RG group and 79.5% in the LG group (log rank P = 0.240; HR 0.92, 95% c.i. 0.80 to 1.06; P = 0.242). Three-year OS rates were 83.9 and 81.8% respectively (log rank P = 0.068; HR 0.87, 0.75 to 1.01; P = 0.068) and the cumulative incidence of recurrence over 3 years was 19.3% versus 20.8% (HR 0.95, 0.88 to 1.03; P = 0.219), with no difference between groups. CONCLUSION: RG and LG in patients with gastric cancer are associated with comparable disease-free and overall survival.


Subject(s)
Laparoscopy , Levamisole/analogs & derivatives , Robotic Surgical Procedures , Stomach Neoplasms , Humans , Treatment Outcome , Cohort Studies , Stomach Neoplasms/surgery , Gastrectomy , Propensity Score , Retrospective Studies , Postoperative Complications/etiology , Postoperative Complications/surgery
13.
J Magn Reson Imaging ; 59(1): 164-176, 2024 01.
Article in English | MEDLINE | ID: mdl-37013673

ABSTRACT

BACKGROUND: Poorly controlled type 2 diabetes mellitus (T2DM) is known to result in left ventricular (LV) dysfunction, myocardial fibrosis, and ischemic/nonischemic dilated cardiomyopathy (ICM/NIDCM). However, less is known about the prognostic value of T2DM on LV longitudinal function and late gadolinium enhancement (LGE) assessed with cardiac MRI in ICM/NIDCM patients. PURPOSE: To measure LV longitudinal function and myocardial scar in ICM/NIDCM patients with T2DM and to determine their prognostic values. STUDY TYPE: Retrospective cohort. POPULATION: Two hundred thirty-five ICM/NIDCM patients (158 with T2DM and 77 without T2DM). FIELD STRENGTH/SEQUENCE: 3T; steady-state free precession cine; phase-sensitive inversion recovery segmented gradient echo LGE sequences. ASSESSMENT: Global peak longitudinal systolic strain rate (GLPSSR) was evaluated to LV longitudinal function with feature tracking. The predictive value of GLPSSR was determined with ROC curve. Glycated hemoglobin (HbA1c) was measured. The primary adverse cardiovascular endpoint was follow up every 3 months. STATISTICAL TESTS: Mann-Whitney U test or student's t-test; Intra and inter-observer variabilities; Kaplan-Meier method; Cox proportional hazards analysis (threshold = 5%). RESULTS: ICM/NIDCM patients with T2DM exhibited significantly lower absolute value of GLPSSR (0.39 ± 0.14 vs. 0.49 ± 0.18) and higher proportion of LGE positive (+) despite similar LV ejection fraction, compared to without T2DM. LV GLPSSR was able to predict primary endpoint (AUC 0.73) and optimal cutoff point was 0.4. ICM/NIDCM patients with T2DM (GLPSSR < 0.4) had more markedly impaired survival. Importantly, this group (GLPSSR < 0.4, HbA1c ≥ 7.8%, or LGE (+)) exhibited the worst survival. In multivariate analysis, GLPSSR, HbA1c, and LGE (+) significantly predicted primary adverse cardiovascular endpoint in overall ICM/NIDCM and ICM/NIDCM patients with T2DM. CONCLUSIONS: T2DM has an additive deleterious effect on LV longitudinal function and myocardial fibrosis in ICM/NIDCM patients. Combining GLPSSR, HbA1c, and LGE could be promising markers in predicting outcomes in ICM/NIDCM patients with T2DM. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: 5.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Diabetes Mellitus, Type 2 , Ventricular Dysfunction, Left , Humans , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/diagnostic imaging , Prognosis , Retrospective Studies , Diabetes Mellitus, Type 2/complications , Contrast Media , Glycated Hemoglobin , Magnetic Resonance Imaging, Cine/methods , Gadolinium , Ventricular Function, Left , Fibrosis , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/diagnostic imaging , Ischemia
14.
PLoS Biol ; 19(7): e3001330, 2021 07.
Article in English | MEDLINE | ID: mdl-34314414

ABSTRACT

Insect cuticular hydrocarbons (CHCs) serve as important intersexual signaling chemicals and generally show variation between the sexes, but little is known about the generation of sexually dimorphic hydrocarbons (SDHCs) in insects. In this study, we report the molecular mechanism and biological significance that underlie the generation of SDHC in the German cockroach Blattella germanica. Sexually mature females possess more C29 CHCs, especially the contact sex pheromone precursor 3,11-DimeC29. RNA interference (RNAi) screen against the fatty acid elongase family members combined with heterologous expression of the genes in yeast revealed that both BgElo12 and BgElo24 were involved in hydrocarbon (HC) production, but BgElo24 is of wide catalytic activities and is able to provide substrates for BgElo12, and only the female-enriched BgElo12 is responsible for sustaining female-specific HC profile. Repressing BgElo12 masculinized the female CHC profile, decreased contact sex pheromone level, and consequently reduced the sexual attractiveness of female cockroaches. Moreover, the asymmetric expression of BgElo12 between the sexes is modulated by sex differentiation cascade. Specifically, male-specific BgDsx represses the transcription of BgElo12 in males, while BgTra is able to remove this effect in females. Our study reveals a novel molecular mechanism responsible for the formation of SDHCs and also provide evidences on shaping of the SDHCs by sexual selection, as females use them to generate high levels of contact sex pheromone.


Subject(s)
Blattellidae/metabolism , Fatty Acids/metabolism , Hydrocarbons/metabolism , Sex Attractants/metabolism , Sex Characteristics , Sexual Behavior, Animal , Animals , Blattellidae/genetics , Blattellidae/physiology , Female , Genes, Insect , Sex Differentiation/genetics
15.
Inorg Chem ; 63(6): 3075-3082, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38295520

ABSTRACT

Herein, an unprecedented cadmium-based metal-organic framework (JNU-106) fabricated by utilizing pyrazole-functionalized tetraphenylethylene ligands (Py-TPE) and rod-shaped secondary building units is reported, possessing a new (3,3,3,6,6,8)-connected topological network. Thanks to the ingeniously designed intramolecular charge transfer behavior, which originates from the congruent coplanarity between Py and TPE, JNU-106 exhibits intense green luminescence with a quantum yield increased by 1.5 times. The phenomenon of remarkable fluorescence quenching of JNU-106 reveals that it possesses extremely high anti-interference performance, superior sensitivity, and dedicated selectivity toward tetracycline antibiotics (TCAs) in aqueous solutions, which are comparable to those of the state-of-the-art porous sensing compounds. Taking the theoretical calculations and experimental results into account, the luminescence quenching is mainly attributed to the internal filtration effect and the static quenching effect. Considering the portable and rapid performance of JNU-106-based testing strips for sensing TCAs, the fabricated JNU-106 provides an alternative for ecological monitoring and environmental governance.

16.
J Chem Ecol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727793

ABSTRACT

Insect cuticular hydrocarbons (CHCs) serve as important waterproofing barriers and as signals and cues in chemical communication. Over the past 30 years, numerous studies on CHCs have been conducted in the German cockroach, Blattella germanica, leading to substantial progress in the field. However, there has not been a systematic review of CHC studies in this species in recent years. This review aims to provide a concise overview of the chemical composition, storage, transport, and physical properties of different CHCs in B. germanica. Additionally, we focus on the biosynthetic pathway and the genetic regulation of HC biosynthesis in this species. A considerable amount of biochemical evidence regarding the biosynthetic pathway of insect CHCs has been gathered from studies conducted in B. germanica. In recent years, there has also been an improved understanding of the molecular mechanisms that underlie CHC production in this insect. In this article, we summarize the biosynthesis of different classes of CHCs in B. germanica. Then, we review CHCs reaction to various environmental conditions and stressors and internal physiological states. Additionally, we review a body of work showing that in B. germanica, CHC profiles exhibit significant sexual dimorphism, specific CHCs act as essential precursors for female contact sex pheromone components, and we summarize the molecular regulatory mechanisms that underlie sexual dimorphism of CHC profiles. Finally, we highlight future directions and challenges in research on the biosynthesis and regulatory mechanisms of CHCs in B. germanica, and also identify potential applications of CHC studies in the pest control.

17.
Surg Endosc ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902410

ABSTRACT

BACKGROUND: With the improvements in laparoscopic or robotic surgical techniques and instruments, a growing number of surgeons have attempted to complete all digestive tract reconstruction intracorporeally; these procedures include totally robotic gastrectomy (TRG) and totally laparoscopic gastrectomy (TLG). This study aimed to evaluate the safety and feasibility of the TRG and compare the short-term outcomes of the TRG and TLG in patients with gastric cancer. METHODS: Between January 2018 and June 2023, 346 consecutive patients who underwent TRG or TLG at a high-volume academic gastric cancer specialty center were included. 1:1 propensity score matching (PSM) was performed to reduce confounding bias. The surgical outcomes, postoperative morbidity, and surgical burden were compared in PSM cohort. RESULTS: After PSM, a well-balanced cohort of 194 patients (97 in each group) was included in the analysis. The total operation time of the TRG group was significantly longer than that of the TLG group (244.9 vs. 213.0 min, P < 0.001). There was no significant difference in the effective operation time between the 2 groups (217.8 vs. 207.2 min, P = 0.059). The digestive tract reconstruction time of the TRG group was significantly shorter than that of the TLG group (39.4 vs. 46.7 min, P < 0.001). The mean blood loss in the TRG group was less than that in the TLG group (101.1 vs. 126.8 mL, P = 0.014). The TRG group had more retrieved lymph nodes in the suprapancreatic area than that in the TLG group (16.6 vs 14.2, P = 0.002). The TRG group had a lower surgery task load index (38.9 vs. 43.1, P < 0.001) than the TLG group. No significant difference was found in terms of postoperative morbidity between the 2 groups (14.4% vs. 16.5%, P = 0.691). CONCLUSION: This study demonstrated that TRG is a safe and feasible procedure, and is preferable to TLG in terms of invasion and ergonomics. The TRG may maximize the superiority of robotic surgical systems and embodies the theory of minimally invasive surgery.

18.
Mol Cell ; 61(4): 507-519, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26876937

ABSTRACT

The regulatory role of N(6)-methyladenosine (m(6)A) and its nuclear binding protein YTHDC1 in pre-mRNA splicing remains an enigma. Here we show that YTHDC1 promotes exon inclusion in targeted mRNAs through recruiting pre-mRNA splicing factor SRSF3 (SRp20) while blocking SRSF10 (SRp38) mRNA binding. Transcriptome assay with PAR-CLIP-seq analysis revealed that YTHDC1-regulated exon-inclusion patterns were similar to those of SRSF3 but opposite of SRSF10. In vitro pull-down assay illustrated a competitive binding of SRSF3 and SRSF10 to YTHDC1. Moreover, YTHDC1 facilitates SRSF3 but represses SRSF10 in their nuclear speckle localization, RNA-binding affinity, and associated splicing events, dysregulation of which, as the result of YTHDC1 depletion, can be restored by reconstitution with wild-type, but not m(6)A-binding-defective, YTHDC1. Our findings provide the direct evidence that m(6)A reader YTHDC1 regulates mRNA splicing through recruiting and modulating pre-mRNA splicing factors for their access to the binding regions of targeted mRNAs.


Subject(s)
Cell Cycle Proteins/metabolism , Nerve Tissue Proteins/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Binding Sites , Exons , HeLa Cells , Humans , RNA Splicing Factors , RNA, Messenger/metabolism , Serine-Arginine Splicing Factors
19.
Chem Biodivers ; 21(6): e202400511, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38538539

ABSTRACT

Two undescribed germacrane-type sesquiterpenoids, salcasins A (1) and B (2), together with three known compounds (3-5) were isolated and identified from the whole plant of Salvia cavaleriei var. simplicifolia Stib. The structures of the undescribed compounds were elucidated on the basis of spectroscopic methods, such as HR-ESI-MS, 1D and 2D NMR data. The relative configurations of 1 and 2 were established by analyzing their NOESY spectra as well as by 13C NMR calculations with DP4+ probability analyses. The absolute configurations of 1 and 2 were determined by comparing experimental and calculated ECD spectra. Furthermore, the in vivo anti-Alzheimer's disease activities of 1-5 were evaluated using Caenorhabditis elegans AD pathological model. Among all isolated compounds, salcasin A (1) significantly delayed AD-like symptoms of worm paralysis, which may be a potential anti-AD candidate agent.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans , Salvia , Sesquiterpenes, Germacrane , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Salvia/chemistry , Caenorhabditis elegans/drug effects , Sesquiterpenes, Germacrane/pharmacology , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Molecular Structure , Molecular Conformation , Disease Models, Animal
20.
J Am Chem Soc ; 145(34): 18931-18938, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37590883

ABSTRACT

Interfacial charge transfer on the surface of heterogeneous photocatalysts dictates the efficiency of reactive oxygen species (ROS) generation and therefore the efficiency of aerobic oxidation reactions. Reticular chemistry in metal-organic frameworks (MOFs) allows for the rational design of donor-acceptor pairs to optimize interfacial charge-transfer kinetics. Herein, we report a series of isostructural fcu-topology Ni8-MOFs (termed JNU-212, JNU-213, JNU-214, and JNU-215) with linearly bridged bipyrazoles as organic linkers. These crystalline Ni8-MOFs can maintain their structural integrity in 7 M NaOH at 100 °C for 24 h. Experimental studies reveal that linker engineering by tuning the electron-accepting capacity of the pyrazole-bridging units renders these Ni8-MOFs with significantly improved charge separation and transfer efficiency under visible-light irradiation. Among them, the one containing a benzoselenadiazole unit (JNU-214) exhibits the best photocatalytic performance in the aerobic oxidation of benzylamines with a conversion rate of 99% in 24 h. Recycling experiments were carried out to confirm the stability and reusability of JNU-214 as a robust heterogeneous catalyst. Significantly, the systematic modulation of the electron-accepting capacity of the bridging units in donor-acceptor-donor MOFs provides a new pathway to develop viable noble-metal-free heterogeneous photocatalysts for aerobic oxidation reactions.

SELECTION OF CITATIONS
SEARCH DETAIL