Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Bioorg Med Chem Lett ; 40: 127963, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33741464

ABSTRACT

Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) are rate-limiting enzymes in the kynurenine pathway (KP) of l-tryptophan (l-Trp) metabolism and are becoming key drug targets in the combination therapy of checkpoint inhibitors in immunoncology. To discover a selective and potent IDO1 inhibitor, a structure-activity relationship (SAR) study of N-hydroxybenzofuran-5-carboximidamide as a novel scaffold was investigated in a systematic manner. Among the synthesized compounds, the N-3-bromophenyl derivative 19 showed the most potent inhibition, with an IC50 value of 0.44 µM for the enzyme and 1.1 µM in HeLa cells. The molecular modeling of 19 with the X-ray crystal structure of IDO1 indicated that dipole-ionic interactions with heme iron, halogen bonding with Cys129 and the two hydrophobic interactions were important for the high potency of 19.


Subject(s)
Amidines/pharmacology , Benzofurans/pharmacology , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Oximes/pharmacology , Amidines/chemical synthesis , Amidines/metabolism , Benzofurans/chemical synthesis , Benzofurans/metabolism , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Docking Simulation , Molecular Structure , Oximes/chemical synthesis , Oximes/metabolism , Protein Binding , Static Electricity , Structure-Activity Relationship
2.
Mol Cancer Ther ; 22(3): 333-342, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36808277

ABSTRACT

PARP inhibitors have been approved by the FDA for use in the treatment of patients with ovarian, breast, pancreatic, and prostate cancers. PARP inhibitors show diverse suppressive effects on PARP family members and PARP-DNA trapping potency. These properties are associated with distinct safety/efficacy profiles. Here, we report the nonclinical characteristics of venadaparib (also known as IDX-1197 or NOV140101), a novel potent PARP inhibitor. The physiochemical properties of venadaparib were analyzed. Furthermore, the efficacy of venadaparib against PARP enzymes, PAR formation, and PARP trapping activities, and growth inhibition of cell lines with BRCA mutations were evaluated. Ex vivo and in vivo models were also established to study pharmacokinetics/pharmacodynamics, efficacy, and toxicity. Venadaparib specifically inhibits PARP-1 and -2 enzymes. Oral administration of venadaparib HCl at doses above 12.5 mg/kg significantly reduced tumor growth in the OV_065 patient-derived xenograft model. Intratumoral PARP inhibition remained at over 90% until 24 hours after dosing. Venadaparib had wider safety margins than olaparib. Notably, venadaparib showed favorable physicochemical properties and superior anticancer effects in homologous recombination-deficient in vitro and in vivo models with improved safety profiles. Our results suggest the possibility of venadaparib as a next-generation PARP inhibitor. On the basis of these findings, phase Ib/IIa studies on the efficacy and safety of venadaparib have been initiated.


Subject(s)
Antineoplastic Agents , Poly(ADP-ribose) Polymerase Inhibitors , Male , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Homologous Recombination
3.
Nutr Res ; 70: 40-49, 2019 10.
Article in English | MEDLINE | ID: mdl-30032989

ABSTRACT

Metabolic inflammation is a distinct feature of obesity. Increased inflammation in the adipose tissue and the liver has been so far implicated to affect metabolic homeostasis, mainly insulin resistance. In addition to the peripherals, the inflammation in the hypothalamus which governs systemic metabolism by linking neuronal and endocrine signals has been suggested to be linked to the metabolic disease. However, the underlying molecular mechanisms are poorly understood. We hypothesized that a high-fat diet (HFD) led to central metabolic inflammation via transcriptional changes in the hypothalamus. To address the hypothesis, we characterized obesity-related hypothalamic, transcriptional alterations, and their effects on functional networks. Male C57BL/6J mice were fed with either a control diet (CD) or an HFD for 20 weeks. Microarray and gene ontology analyses of the hypothalamus demonstrated that immune-related pathways, including inflammatory and cytokine signaling, were overrepresented in the hypothalamus of HFD-fed mice compared to that of CD mice. In addition, through secondary analysis of leptin-deficient obese (ob/ob) mouse hypothalamus, we found that enriched gene sets for tumor necrosis factor-α signaling pathways and cancer pathways were common in both the obese mouse models. The results suggest that inflammatory pathway is transcriptionally enriched in the hypothalamus in obesity models and is related with hyperadiposity rather than the primary causes of obesity including the dietary fat and the genetic mutation.


Subject(s)
Adipose Tissue/pathology , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Hypothalamus/metabolism , Inflammation/metabolism , Obesity/metabolism , Adiposity , Animals , Dietary Fats/metabolism , Disease Models, Animal , Inflammation/etiology , Inflammation/genetics , Insulin Resistance , Leptin/metabolism , Liver/metabolism , Male , Metabolic Diseases/etiology , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mice, Inbred C57BL , Mice, Obese , Neoplasms/metabolism , Obesity/complications , Obesity/genetics , Obesity/pathology , Transcription, Genetic , Tumor Necrosis Factor-alpha/metabolism
4.
Prev Nutr Food Sci ; 22(2): 81-89, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28702424

ABSTRACT

Healthy aging has become a major goal of public health. Many studies have provided evidence and theories to explain molecular mechanisms of the aging process. Recent studies suggest that epigenetic mechanisms are responsible for life span and the progression of aging. Epigenetics is a fascinating field of molecular biology, which studies heritable modifications of DNA and histones that regulate gene expression without altering the DNA sequence. DNA methylation is a major epigenetic mark that shows progressive changes during aging. Recent studies have investigated aging-related DNA methylation as a biomarker that predicts cellular age. Interestingly, growing evidence proposes that nutrients play a crucial role in the regulation of epigenetic modifiers. Because various nutrients and their metabolites function as substrates or cofactors for epigenetic modifiers, nutrition can modulate or reverse epigenetic marks in the genome as well as expression patterns. Here, we will review the results on aging-associated epigenetic modifications and the possible mechanisms by which nutrition, including nutrient availability and bioactive compounds, regulate epigenetic changes and affect aging physiology.

5.
Sci Rep ; 7(1): 13459, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044188

ABSTRACT

While transcription as regulated by histones and their post-translational modifications has been well described, the function of histone variants in this process remains poorly characterized. Potentially important insight into this process pertain to the frequently occurring mutations of H3.3, leading to G34 substitutions in childhood glioblastoma and giant cell tumor of the bone (GCTB). In this study, we have established primary cell lines from GCTB patients and used them to uncover the influence of H3.3 G34W substitutions on cellular growth behavior, gene expression, and chromatin compaction. Primary cell lines with H3.3 G34W showed increased colony formation, infiltration and proliferation, known hallmarks of tumor development. Isogenic cell lines with H3.3 G34W recapitulated the increased proliferation observed in primary cells. Transcriptomic analysis of primary cells and tumor biopsies revealed slightly more downregulated gene expression, perhaps by increased chromatin compaction. We identified components related to splicing, most prominently hnRNPs, by immunoprecipitation and mass spectrometry that specifically interact with H3.3 G34W in the isogenic cell lines. RNA-sequencing analysis and hybridization-based validations further enforced splicing aberrations. Our data uncover a role for H3.3 in RNA processing and chromatin modulation that is blocked by the G34W substitution, potentially driving the tumorigenic process in GCTB.


Subject(s)
Amino Acid Substitution , Bone Neoplasms/genetics , Chromatin/genetics , Giant Cell Tumor of Bone/genetics , Histones/genetics , Mutation , RNA Processing, Post-Transcriptional , Bone Neoplasms/diagnosis , Carrier Proteins , Cell Line, Tumor , Chromatin/metabolism , Chromatography, Liquid , Computational Biology , Female , Gene Expression Profiling , Giant Cell Tumor of Bone/diagnosis , High-Throughput Nucleotide Sequencing , Histones/metabolism , Humans , Male , Models, Biological , Protein Binding , Protein Interaction Mapping , Tandem Mass Spectrometry , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL