Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Hum Mutat ; 40(8): 1115-1126, 2019 08.
Article in English | MEDLINE | ID: mdl-31264822

ABSTRACT

Encoding the slow skeletal muscle isoform of myosin binding protein-C, MYBPC1 is associated with autosomal dominant and recessive forms of arthrogryposis. The authors describe a novel association for MYBPC1 in four patients from three independent families with skeletal muscle weakness, myogenic tremors, and hypotonia with gradual clinical improvement. The patients carried one of two de novo heterozygous variants in MYBPC1, with the p.Leu263Arg variant seen in three individuals and the p.Leu259Pro variant in one individual. Both variants are absent from controls, well conserved across vertebrate species, predicted to be damaging, and located in the M-motif. Protein modeling studies suggested that the p.Leu263Arg variant affects the stability of the M-motif, whereas the p.Leu259Pro variant alters its structure. In vitro biochemical and kinetic studies demonstrated that the p.Leu263Arg variant results in decreased binding of the M-motif to myosin, which likely impairs the formation of actomyosin cross-bridges during muscle contraction. Collectively, our data substantiate that damaging variants in MYBPC1 are associated with a new form of an early-onset myopathy with tremor, which is a defining and consistent characteristic in all affected individuals, with no contractures. Recognition of this expanded myopathic phenotype can enable identification of individuals with MYBPC1 variants without arthrogryposis.


Subject(s)
Arthrogryposis/genetics , Carrier Proteins/genetics , Mutation , Neuromuscular Diseases/genetics , Whole Genome Sequencing/methods , Adult , Carrier Proteins/chemistry , Child , Fathers , Female , Humans , Infant , Male , Models, Molecular , Pedigree , Phenotype , Protein Conformation
2.
Ann Neurol ; 82(3): 466-478, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28856709

ABSTRACT

OBJECTIVE: Rett syndrome (RTT) and epileptic encephalopathy (EE) are devastating neurodevelopmental disorders with distinct diagnostic criteria. However, highly heterogeneous and overlapping clinical features often allocate patients into the boundary of the two conditions, complicating accurate diagnosis and appropriate medical interventions. Therefore, we investigated the specific molecular mechanism that allows an understanding of the pathogenesis and relationship of these two conditions. METHODS: We screened novel genetic factors from 34 RTT-like patients without MECP2 mutations, which account for ∼90% of RTT cases, by whole-exome sequencing. The biological function of the discovered variants was assessed in cell culture and Xenopus tropicalis models. RESULTS: We identified a recurring de novo variant in GABAB receptor R2 (GABBR2) that reduces the receptor function, whereas different GABBR2 variants in EE patients possess a more profound effect in reducing receptor activity and are more responsive to agonist rescue in an animal model. INTERPRETATION: GABBR2 is a genetic factor that determines RTT- or EE-like phenotype expression depending on the variant positions. GABBR2-mediated γ-aminobutyric acid signaling is a crucial factor in determining the severity and nature of neurodevelopmental phenotypes. Ann Neurol 2017;82:466-478.


Subject(s)
Mutation , Receptors, GABA-B/genetics , Rett Syndrome/genetics , Spasms, Infantile/genetics , Exome , Genotype , HEK293 Cells , Humans , Methyl-CpG-Binding Protein 2/genetics , Phenotype , Signal Transduction/genetics
3.
Epilepsia ; 59(2): 389-402, 2018 02.
Article in English | MEDLINE | ID: mdl-29315614

ABSTRACT

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Subject(s)
Epilepsies, Myoclonic/physiopathology , GABA Plasma Membrane Transport Proteins/genetics , Intellectual Disability/physiopathology , Language Development Disorders/physiopathology , Adolescent , Adult , Anticonvulsants/therapeutic use , Ataxia/complications , Ataxia/genetics , Ataxia/physiopathology , Child , Child, Preschool , Cohort Studies , Electroencephalography , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsies, Partial/complications , Epilepsies, Partial/drug therapy , Epilepsies, Partial/genetics , Epilepsies, Partial/physiopathology , Epilepsy, Generalized/complications , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/genetics , Epilepsy, Generalized/physiopathology , Female , Genetic Association Studies , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Language Development Disorders/complications , Language Development Disorders/genetics , Male , Mutation , Mutation, Missense , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/genetics , Phenotype , Treatment Outcome , Valproic Acid/therapeutic use , Young Adult
4.
J Neurooncol ; 138(1): 41-48, 2018 May.
Article in English | MEDLINE | ID: mdl-29423538

ABSTRACT

Although meningioma is the most common primary tumor of the central nervous system, the mechanism of progression from benign to atypical or anaplastic grade remains elusive. The present case reports the genomic evaluation of two synchronous meningiomas with different histological grades (benign and atypical) in the same patient. Under the assumption that the atypical tumor may have progressed from the benign tumor, the clonal origin of the lesions was investigated to identify genomic events responsible for the oncogenic process of evolution to higher grades in meningioma. A 59 year-old female patient was diagnosed with two synchronous meningiomas with different histological grades, benign and atypical. Whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analysis of both tumors were done. WES analysis showed that each meningioma harbored distinct mutation profiles, and RNA-seq analysis revealed distinct gene expression profiles between the two tumors. The only apparent common genetic abnormality found in both tumors was the loss of heterozygosity of chromosome 22, raising the possibility that this event is the initial step in tumor formation, after which distinct subsequent mutations lead to the evolvement of two separate tumors of different grades. The result provides additional evidence on previous reports suggesting separate, independent mechanism of progression into higher grades in meningioma.


Subject(s)
Genomics , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningioma/genetics , Meningioma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Disease Progression , Female , Gene Expression , Humans , Middle Aged
5.
Am J Med Genet A ; 170(8): 2200-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27232954

ABSTRACT

There have been a few reports of GM3 synthase deficiency since the disease of the ganglioside biosynthetic pathway was first reported in 2004. It is characterized by infantile-onset epilepsy with severe intellectual disability, blindness, cutaneous dyspigmentation, and choreoathetosis. Here we report the cases of two Korean female siblings with ST3GAL5 variants, who presented with a Rett-like phenotype. They had delayed speech, hand stereotypies with a loss of purposeful hand movements, and choreoathetosis, but no clinical seizures. One of them had microcephaly, while the other had small head circumference less than 10th centile. There were no abnormal laboratory findings with the exception of a high lactate level. MECP2/CDKL5/FOXG1 genetic tests with an array comparative genomic hybridization revealed no molecular defects. Through whole-exome sequencing of the proband, we found compound heterozygous ST3GAL5 variants (p.Gly201Arg and p.Cys195Ser), both of which were novel. The siblings were the same compound heterozygotes and their unaffected parents were heterozygous carriers of each variant. Liquid chromatography-mass spectrometry analysis confirmed a low level of GM3 and its downstream metabolites, indicating GM3 synthase deficiency. These cases expanded the clinical and genetic spectrum of the ultra-rare disease, GM3 synthase deficiency with ST3GAL5 variants. © 2016 Wiley Periodicals, Inc.


Subject(s)
Epilepsy/diagnosis , Epilepsy/genetics , Genetic Variation , Rett Syndrome/diagnosis , Rett Syndrome/genetics , Sialyltransferases/deficiency , Siblings , Amino Acid Substitution , Child, Preschool , DNA Mutational Analysis , Exome , Female , Genetic Association Studies , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant , Pedigree , Phenotype , Sialyltransferases/genetics
6.
J Hum Genet ; 60(4): 213-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25608830

ABSTRACT

Multiple pterygium syndrome (MPS) is an autosomal recessively inherited condition that becomes evident before birth, with pterygium at multiple joints and akinesia. There are two forms of this syndrome that are differentiated by clinical severity: the milder form, Escobar type (OMIM#265000), and the more severe form, lethal type (OMIM#253290). Mutations in CHRNG, which encode the acetylcholine receptor gamma subunit, cause most cases of MPS. Here, we present three patients from two unrelated families showing multiple joint contractures in both the upper and lower limbs. High-arched palates with malocclusion, short neck and micrognathia were observed in all patients. Peripheral blood karyotypes were normal. Whole-exome sequencing analysis of the patients' genomes led to the discovery of identical missense (p.Pro143Arg) and frameshift deletion variants (p.Pro251fs*45) on CHRNG. These were rare cases of congenital arthrogryposis multiplex related to novel recessive CHRNG variants in two Korean kindred without apparent relatedness.


Subject(s)
Arthrogryposis/genetics , Mutation , Receptors, Nicotinic/genetics , Amino Acid Sequence , Amino Acid Substitution , Arthrogryposis/diagnosis , Child , Child, Preschool , Exome , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree , Phenotype
8.
Nat Neurosci ; 27(5): 901-912, 2024 May.
Article in English | MEDLINE | ID: mdl-38514857

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination of the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) shows promising benefits for relapsing-remitting MS in open-label clinical studies, but the cellular mechanisms underlying its therapeutic effects remain unclear. Using single-nucleus RNA sequencing, we identify a reactive myeloid cell state in chronic experimental autoimmune encephalitis (EAE) associated with neuroprotection and immune suppression. HCT in EAE mice results in an increase of the neuroprotective myeloid state, improvement of neurological deficits, reduced number of demyelinated lesions, decreased number of effector T cells and amelioration of reactive astrogliosis. Enhancing myeloid cell incorporation after a modified HCT further improved these neuroprotective effects. These data suggest that myeloid cell manipulation or replacement may be an effective therapeutic strategy for chronic inflammatory conditions of the CNS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Myeloid Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Female , Hematopoietic Stem Cell Transplantation/methods , Neuroprotection/physiology
9.
Anim Cells Syst (Seoul) ; 28(1): 184-197, 2024.
Article in English | MEDLINE | ID: mdl-38693921

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has chemotherapeutic potential as a regulator of an extrinsic apoptotic ligand, but its effect as a drug is limited by innate and acquired resistance. Recent findings suggest that an intermediate drug tolerance could mediate acquired resistance, which has made the main obstacle for limited utility of TRAIL as an anti-cancer therapeutics. We propose miRNA-dependent epigenetic modification drives the drug tolerant state in TRAIL-induced drug tolerant (TDT). Transcriptomic analysis revealed miR-29 target gene activation in TDT cells, showing oncogenic signature in lung cancer. Also, the restored TRAIL-sensitivity was associated with miR-29ac and 140-5p expressions, which is known as tumor suppressor by suppressing oncogenic protein RSK2 (p90 ribosomal S6 kinase), further confirmed in patient samples. Moreover, we extended this finding into 119 lung cancer cell lines from public data set, suggesting a significant correlation between TRAIL-sensitivity and RSK2 mRNA expression. Finally, we found that increased RSK2 mRNA is responsible for NF-κB activation, which we previously showed as a key determinant in both innate and acquired TRAIL-resistance. Our findings support further investigation of miR-29ac and -140-5p inhibition to maintain TRAIL-sensitivity and improve the durability of response to TRAIL in lung cancer.

10.
Cell Stem Cell ; 30(8): 1043-1053.e6, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541210

ABSTRACT

Alzheimer's disease (AD) remains one of the grand challenges facing human society. Much controversy exists around the complex and multifaceted pathogenesis of this prevalent disease. Given strong human genetic evidence, there is little doubt, however, that microglia play an important role in preventing degeneration of neurons. For example, loss of function of the microglial gene Trem2 renders microglia dysfunctional and causes an early-onset neurodegenerative syndrome, and Trem2 variants are among the strongest genetic risk factors for AD. Thus, restoring microglial function represents a rational therapeutic approach. Here, we show that systemic hematopoietic cell transplantation followed by enhancement of microglia replacement restores microglial function in a Trem2 mutant mouse model of AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Microglia , Neurons/metabolism , Disease Models, Animal , Brain/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
11.
bioRxiv ; 2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36945385

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease associated with inflammatory demyelination in the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) is under investigation as a promising therapy for treatment-refractory MS. Here we identify a reactive myeloid state in chronic experimental autoimmune encephalitis (EAE) mice and MS patients that is surprisingly associated with neuroprotection and immune suppression. HCT in EAE mice leads to an enhancement of this myeloid state, as well as clinical improvement, reduction of demyelinated lesions, suppression of cytotoxic T cells, and amelioration of reactive astrogliosis reflected in reduced expression of EAE-associated gene signatures in oligodendrocytes and astrocytes. Further enhancement of myeloid cell incorporation into the CNS following a modified HCT protocol results in an even more consistent therapeutic effect corroborated by additional amplification of HCT-induced transcriptional changes, underlining myeloid-derived beneficial effects in the chronic phase of EAE. Replacement or manipulation of CNS myeloid cells thus represents an intriguing therapeutic direction for inflammatory demyelinating disease.

12.
bioRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106052

ABSTRACT

Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.

13.
Nat Genet ; 55(11): 1876-1891, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857935

ABSTRACT

Noncoding variants of presumed regulatory function contribute to the heritability of neuropsychiatric disease. A total of 2,221 noncoding variants connected to risk for ten neuropsychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, bipolar disorder, borderline personality disorder, major depression, generalized anxiety disorder, panic disorder, post-traumatic stress disorder, obsessive-compulsive disorder and schizophrenia, were studied in developing human neural cells. Integrating epigenomic and transcriptomic data with massively parallel reporter assays identified differentially-active single-nucleotide variants (daSNVs) in specific neural cell types. Expression-gene mapping, network analyses and chromatin looping nominated candidate disease-relevant target genes modulated by these daSNVs. Follow-up integration of daSNV gene editing with clinical cohort analyses suggested that magnesium transport dysfunction may increase neuropsychiatric disease risk and indicated that common genetic pathomechanisms may mediate specific symptoms that are shared across multiple neuropsychiatric diseases.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Bipolar Disorder , Depressive Disorder, Major , Obsessive-Compulsive Disorder , Schizophrenia , Humans , Autism Spectrum Disorder/genetics , Bipolar Disorder/genetics , Schizophrenia/genetics , Obsessive-Compulsive Disorder/genetics , Obsessive-Compulsive Disorder/psychology , Depressive Disorder, Major/genetics , Attention Deficit Disorder with Hyperactivity/genetics
14.
Sci Transl Med ; 14(636): eabl9945, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35294256

ABSTRACT

Hematopoietic cell transplantation after myeloablative conditioning has been used to treat various genetic metabolic syndromes but is largely ineffective in diseases affecting the brain presumably due to poor and variable myeloid cell incorporation into the central nervous system. Here, we developed and characterized a near-complete and homogeneous replacement of microglia with bone marrow cells in mice without the need for genetic manipulation of donor or host. The high chimerism resulted from a competitive advantage of scarce donor cells during microglia repopulation rather than enhanced recruitment from the periphery. Hematopoietic stem cells, but not immediate myeloid or monocyte progenitor cells, contained full microglia replacement potency equivalent to whole bone marrow. To explore its therapeutic potential, we applied microglia replacement to a mouse model for Prosaposin deficiency, which is characterized by a progressive neurodegeneration phenotype. We found a reduction of cerebellar neurodegeneration and gliosis in treated brains, improvement of motor and balance impairment, and life span extension even with treatment started in young adulthood. This proof-of-concept study suggests that efficient microglia replacement may have therapeutic efficacy for a variety of neurological diseases.


Subject(s)
Brain Diseases , Hematopoietic Stem Cell Transplantation , Animals , Bone Marrow Cells , Brain , Central Nervous System , Mice , Microglia
15.
Cancers (Basel) ; 13(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206586

ABSTRACT

Liposarcoma (LPS) is an adult soft tissue malignancy that arises from fat tissue, where well-differentiated (WD) and dedifferentiated (DD) forms are the most common. DDLPS represents the progression of WDLPS into a more aggressive high-grade and metastatic form. Although a few DNA copy-number amplifications are known to be specifically found in WD- or DDLPS, systematic genetic differences that signify subtype determination between WDLPS and DDLPS remain unclear. Here, we profiled the genome and transcriptome of 38 LPS tumors to uncover the genetic signatures of subtype differences. Replication-dependent histone (RD-HIST) mRNAs were highly elevated and their regulation was disrupted in a subset of DDLPS, increasing cellular histone molecule levels, as measured using RNA-seq (the averaged fold change of 53 RD-HIST genes between the DD and WD samples was 10.9) and immunohistochemistry. The change was not observed in normal tissues. Integrated whole-exome sequencing, RNA-seq, and methylation analyses revealed that the overexpressed HMGA2 (the fold change between DD and WD samples was 7.3) was responsible for the increased RD-HIST level, leading to aberrant cell proliferation. Therefore, HMGA2-mediated elevation of RD-HISTs were crucial events in determining the aggressiveness of DDLPS, which may serve as a biomarker for prognosis prediction for liposarcoma patients.

17.
Sci Rep ; 10(1): 1413, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996704

ABSTRACT

A substantial portion of Mendelian disease patients suffers from genetic variants that are inherited in a recessive manner. A precise understanding of pathogenic recessive variants in a population would assist in pre-screening births of such patients. However, a systematic understanding of the contribution of recessive variants to Mendelian diseases is still lacking. Therefore, genetic diagnosis and variant discovery of 553 undiagnosed Korean patients with complex neurodevelopmental problems (KND for Korean NeuroDevelopmental cohort) were performed using whole exome sequencing of patients and their parents. Disease-causing variants, including newly discovered variants, were identified in 57.5% of the probands of the KND cohort. Among the patients with the previous reported pathogenic variants, 35.1% inherited these variants in a recessive manner. Genes that cause recessive disorders in our cohort tend to be less constrained by loss-of-function variants and were enriched in lipid metabolism and mitochondrial functions. This observation was applied to an estimation that approximately 1 in 17 healthy Korean individuals carry at least one of these pathogenic variants that develop severe neurodevelopmental problems in a recessive manner. Furthermore, the feasibility of these genes for carrier screening was evaluated. Our results will serve as a foundation for recessive variant screening to reduce occurrences of rare Mendelian disease patients. Additionally, our results highlight the utility and necessity of whole exome sequencing-based diagnostics for improving patient care in a country with a centralized medical system.


Subject(s)
Genes, Recessive/genetics , Genetic Carrier Screening/methods , Neurodevelopmental Disorders/genetics , Adolescent , Child , Child, Preschool , Feasibility Studies , Female , Genetic Carrier Screening/statistics & numerical data , Humans , Infant , Infant, Newborn , Male , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/epidemiology , Republic of Korea/epidemiology , Exome Sequencing , Young Adult
18.
Mol Genet Genomic Med ; 7(3): e532, 2019 03.
Article in English | MEDLINE | ID: mdl-30569584

ABSTRACT

BACKGROUND: The clinical spectrum of Rett syndrome (RTT; Mendelian Inheritance in Man [MIM] #312750) in males is considered to be wider than previously expected. Therefore, the existence of RTT with a normal male karyotype is still controversial. Here, we report the first case of a male patient presenting with an early seizure type of Rett-like phenotypes with a missense variant of MECP2. METHOD: An 8-month-old male was admitted to the pediatric department due to an initial seizure event following aspiration pneumonia and was referred to our clinic for the evaluation of unexplained neuroregression. Genomic DNA was prepared from venous blood by standard procedures and was processed at the Yale Center for Genome Analysis (YCGA) for whole exome sequencing (WES). Processing of sequence data, variant calling, and the identification of de novo mutations were then performed. Direct Sanger sequencing was performed following PCR amplification. RESULT: In this patient with a normal karyotype, WES analysis led to the identification of a novel, de novo missense variant of MECP2 (p.Arg133His) that is not observed in the normal population. CONCLUSION: This rare case of an p.Arg133His hemizygous MECP2 missense mutation could guide future treatment and follow-up plans for RETT-like phenotypes.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Mutation, Missense , Rett Syndrome/genetics , Humans , Infant , Male , Methyl-CpG-Binding Protein 2/metabolism , Phenotype , Rett Syndrome/pathology
19.
Nat Commun ; 10(1): 3094, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31300657

ABSTRACT

AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.


Subject(s)
Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Receptors, AMPA/genetics , Adolescent , Adult , Brain/diagnostic imaging , Child , Child, Preschool , Cohort Studies , Female , Heterozygote , Humans , Infant , Loss of Function Mutation , Magnetic Resonance Imaging , Male , Neurodevelopmental Disorders/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL