Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Pathog ; 20(7): e1012348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39008518

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.


Subject(s)
Glycoproteins , Phlebovirus , Viral Tropism , Animals , Glycosylation , Mice , Virulence , Phlebovirus/pathogenicity , Phlebovirus/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Humans , Severe Fever with Thrombocytopenia Syndrome/virology , Mice, Inbred C57BL , Bunyaviridae Infections/virology , Bunyaviridae Infections/metabolism , Ticks/virology , Mice, Knockout , Orthobunyavirus/pathogenicity , Orthobunyavirus/genetics , Orthobunyavirus/metabolism
2.
J Infect Chemother ; 30(6): 488-493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38042298

ABSTRACT

INTRODUCTION: Tecovirimat's application in treating mpox remains under-researched, leaving gaps in clinical and virological understanding. METHODS: The Tecopox study in Japan evaluated the efficacy and safety of tecovirimat in patients with smallpox or mpox, who were divided into oral tecovirimat and control groups. Patients with mpox enrolled between June 28, 2022, and April 30, 2023, were included. Demographic and clinical details along with blood, urine, pharyngeal swab, and skin lesion samples were gathered for viral analysis. A multivariable Tobit regression model was employed to identify factors influencing prolonged viral detection. RESULTS: Nineteen patients were allocated to the tecovirimat group, and no patients were allocated to the control group. The median age was 38.5 years, and all patients were males. Ten patients (52.6%) were infected with human immunodeficiency virus (HIV). Sixteen patients (84.2%) had severe disease. Nine of the 15 patients (60.0%) (four patients withdrew before day 14) had negative PCR results for skin lesion specimens 14 days after inclusion. The mortality rates were 0% on days 14 and 30. No severe adverse events were reported. HIV status and the number of days from symptom onset to tecovirimat administration were associated with lower Ct values (p = 0.027 and p < 0.001, respectively). The median number of days when PCR testing did not detect the mpox virus in each patient was 19.5 days. CONCLUSION: Early tecovirimat administration might reduce viral shedding duration, thereby mitigating infection spread. Moreover, patients infected with HIV showed prolonged viral shedding, increasing the transmission risk compared to those without HIV.

3.
J Infect Dis ; 228(5): 591-603, 2023 08 31.
Article in English | MEDLINE | ID: mdl-36892247

ABSTRACT

BACKGROUND: Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS: We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS: Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 µM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS: These data suggest that atovaquone would be a potential candidate for treating mpox.


Subject(s)
Mefloquine , Monkeypox virus , Humans , Atovaquone/pharmacology , Atovaquone/therapeutic use , Mefloquine/pharmacology , Mefloquine/therapeutic use , Monkeypox virus/drug effects
4.
J Virol ; 96(17): e0108322, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35993739

ABSTRACT

Ebola virus (EBOV) VP30 regulates viral genome transcription and replication by switching its phosphorylation status. However, the importance of VP30 phosphorylation and dephosphorylation in other viral replication processes such as nucleocapsid and virion assembly is unclear. Interestingly, VP30 is predominantly dephosphorylated by cellular phosphatases in viral inclusions, while it is phosphorylated in the released virions. Thus, uncertainties regarding how VP30 phosphorylation in nucleocapsids is achieved and whether VP30 phosphorylation provides any advantages in later steps in viral replication have arisen. In the present study, to characterize the roles of VP30 phosphorylation in nucleocapsid formation, we used electron microscopic analyses and live cell imaging systems. We identified VP30 localized to the surface of protrusions surrounding nucleoprotein (NP)-forming helical structures in the nucleocapsid, suggesting the involvement in assembly and transport of nucleocapsids. Interestingly, VP30 phosphorylation facilitated its association with nucleocapsid-like structures (NCLSs). On the contrary, VP30 phosphorylation does not influence the transport characteristics and NCLS number leaving from and coming back into viral inclusions, indicating that the phosphorylation status of VP30 is not a prerequisite for NCLS departure. Moreover, the phosphorylation status of VP30 did not cause major differences in nucleocapsid transport in authentic EBOV-infected cells. In the following budding step, the association of VP30 and its phosphorylation status did not influence the budding efficiency of virus-like particles. Taken together, it is plausible that EBOV may utilize the phosphorylation of VP30 for its selective association with nucleocapsids, without affecting nucleocapsid transport and virion budding processes. IMPORTANCE Ebola virus (EBOV) causes severe fevers with unusually high case fatality rates. The nucleocapsid provides the template for viral genome transcription and replication. Thus, understanding the regulatory mechanism behind its formation is important for the development of novel therapeutic approaches. Previously, we established a live-cell imaging system based on the ectopic expression of viral fluorescent fusion proteins, allowing the visualization and characterization of intracytoplasmic transport of nucleocapsid-like structures. EBOV VP30 is an essential transcriptional factor for viral genome synthesis, and, although its role in viral genome transcription and replication is well understood, the functional importance of VP30 phosphorylation in assembly of nucleocapsids is still unclear. Our work determines the localization of VP30 at the surface of ruffled nucleocapsids, which differs from the localization of polymerase in EBOV-infected cells. This study sheds light on the novel role of VP30 phosphorylation in nucleocapsid assembly, which is an important prerequisite for virion formation.


Subject(s)
Ebolavirus , Nucleocapsid , Transcription Factors , Viral Proteins , Virus Assembly , Biological Transport , Ebolavirus/chemistry , Ebolavirus/growth & development , Ebolavirus/metabolism , Hemorrhagic Fever, Ebola/virology , Humans , Nucleocapsid/biosynthesis , Nucleocapsid/metabolism , Phosphorylation , Transcription Factors/chemistry , Transcription Factors/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virion/chemistry , Virion/growth & development , Virion/metabolism
5.
J Virol ; 96(7): e0004922, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35319224

ABSTRACT

Heartland bandavirus (HRTV), which is an emerging tick-borne virus first identified in Missouri in 2009, causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. HRTV is genetically close to Dabie bandavirus, which is the causative agent of severe fever with thrombocytopenia syndrome (SFTS) in humans and is known as SFTS virus (SFTSV). The generation of infectious HRTV entirely from cloned cDNAs has not yet been reported. The absence of a reverse genetics system for HRTV has delayed efforts to understand its pathogenesis and to generate vaccines and antiviral drugs. Here, we developed a reverse genetics system for HRTV, which employs an RNA polymerase I-mediated expression system. A recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO) was generated. We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. The rHRTV-NSsKO was highly attenuated, indicated by the apparent absence of symptoms in a mouse model of HRTV infection. Moreover, mice immunized with rHRTV-NSsKO survived a lethal dose of HRTV. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV. IMPORTANCE Heartland bandavirus (HRTV) is a tick-borne virus identified in the United States in 2009. HRTV causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. FDA-approved vaccines and antiviral drugs are unavailable. The lack of a reverse genetics system hampers efforts to develop such antiviral therapeutics. Here, we developed a reverse genetics system for HRTV that led to the generation of a recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO). We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. Furthermore, rHRTV-NSsKO was highly attenuated and immunogenic in a mouse model. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV.


Subject(s)
Phlebovirus , Reverse Genetics , Viral Nonstructural Proteins , Animals , Antiviral Agents/metabolism , Arthralgia , Bunyaviridae/genetics , Bunyaviridae/immunology , Bunyaviridae/pathogenicity , Diarrhea , Fatigue , Headache , Humans , Immunity, Innate/immunology , Mice , Nausea , Phlebovirus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Reverse Genetics/methods , Signal Transduction/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Virulence/genetics , Virulence Factors/genetics
6.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Article in English | MEDLINE | ID: mdl-33534867

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Subject(s)
Antigens, Viral/immunology , Nucleoproteins/immunology , Phlebovirus/immunology , Severe Fever with Thrombocytopenia Syndrome/prevention & control , Vaccines, Attenuated/administration & dosage , Vaccines, Synthetic/administration & dosage , Viral Envelope Proteins/immunology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/virology
7.
Emerg Infect Dis ; 27(4): 1247-1249, 2021 04.
Article in English | MEDLINE | ID: mdl-33755004

ABSTRACT

Severe fever with thrombocytopenia syndrome was diagnosed in a febrile woman in Japan after a tick bite. However, Rickettsia japonica DNA was retrospectively detected in the eschar specimen, suggesting co-infection from the bite. Establishment of the severe fever with thrombocytopenia syndrome virus infection might have overpowered the R. japonica infection.


Subject(s)
Coinfection , Rickettsia Infections , Rickettsia , Severe Fever with Thrombocytopenia Syndrome , Tick Bites , Female , Humans , Japan , Retrospective Studies
8.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: mdl-32669329

ABSTRACT

Herpesviruses exist in nature within each host animal. Ten herpesviruses have been isolated from bats and their biological properties reported. A novel bat alphaherpesvirus, which we propose to name "Pteropus lylei-associated alphaherpesvirus (PLAHV)," was isolated from urine of the fruit bat Pteropus lylei in Vietnam and characterized. The entire genome sequence was determined to be 144,008 bp in length and predicted to include 72 genes. PLAHV was assigned to genus Simplexvirus with other bat alphaherpesviruses isolated from pteropodid bats in Southeast Asia and Africa. The replication capacity of PLAHV in several cells was evaluated in comparison with that of herpes simplex virus 1 (HSV-1). PLAHV replicated better in the bat-originated cell line and less in human embryonic lung fibroblasts than HSV-1 did. PLAHV was serologically related to another bat alphaherpesvirus, Pteropodid alphaherpesvirus 1 (PtAHV1), isolated from a Pteropus hypomelanus-related bat captured in Indonesia, but not with HSV-1. PLAHV caused lethal infection in mice. PLAHV was as susceptible to acyclovir as HSV-1 was. Characterization of this new member of bat alphaherpesviruses, PLAHV, expands the knowledge on bat-associated alphaherpesvirology.IMPORTANCE A novel bat alphaherpesvirus, Pteropus lylei-associated alphaherpesvirus (PLAHV), was isolated from urine of the fruit bat Pteropus lylei in Vietnam. The whole-genome sequence was determined and was predicted to include 72 open reading frames in the 144,008-bp genome. PLAHV is circulating in a species of fruit bats, Pteropus lylei, in Asia. This study expands the knowledge on bat-associated alphaherpesvirology.


Subject(s)
Alphaherpesvirinae/genetics , Chiroptera/virology , Genome, Viral , Herpesviridae Infections/veterinary , Viral Proteins/genetics , Acyclovir/pharmacology , Alphaherpesvirinae/classification , Alphaherpesvirinae/drug effects , Alphaherpesvirinae/pathogenicity , Animals , Antiviral Agents/pharmacology , COS Cells , Cell Line , Chlorocebus aethiops , Fibroblasts/virology , Gene Expression , Genome Size , HeLa Cells , Herpesviridae Infections/drug therapy , Herpesviridae Infections/epidemiology , Herpesviridae Infections/mortality , Herpesvirus 1, Human/classification , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/pathogenicity , Humans , Mice , Phylogeny , Survival Analysis , Vero Cells , Vietnam/epidemiology , Viral Proteins/metabolism , Virus Replication
9.
Emerg Infect Dis ; 26(4): 744-747, 2020 04.
Article in English | MEDLINE | ID: mdl-32186489

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly transmissible human pathogen. Infection is often misdiagnosed, in part because of poor availability of data in disease-endemic areas. We sampled 150 apparently healthy ruminants throughout Nigeria for virus seropositivity and detected virus-specific IgG in cattle (24%) and goats (2%), highlighting the need for further investigations.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Animals , Antibodies, Viral , Cattle , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Nigeria/epidemiology , Prevalence , Ruminants , Seroepidemiologic Studies
10.
Emerg Infect Dis ; 26(4): 692-699, 2020 04.
Article in English | MEDLINE | ID: mdl-32186502

ABSTRACT

We conducted an epidemiologic study of severe fever with thrombocytopenia syndrome (SFTS) in Japan during 2013-2017. Of 303 cases reported during that period, 133 (44%) were included in this study. The median time between onset of illness and diagnosis of SFTS shortened, from 11.5 to 3.0 days, but the case-fatality rate remained high, at 27%. In 64 patients (48%), a close contact with companion animals was reported within 2 weeks of disease onset. Of these 64 patients, 40 were surveyed further, and we confirmed that 3 had direct contact with body fluids of ill companion animals; 2 had direct contact with the saliva of an ill feral cat or pet dog. These patients reported no history of tick bite, suggesting that ill companion animals might be a source of SFTS virus transmission. Direct contact with the body fluids of ill companion animals should be avoided.


Subject(s)
Body Fluids , Bunyaviridae Infections , Phlebotomus Fever , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Tick Bites , Animals , Bunyaviridae Infections/diagnosis , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Cats , Dogs , Humans , Japan/epidemiology , Phlebotomus Fever/diagnosis , Phlebotomus Fever/epidemiology , Phlebovirus/genetics
11.
Emerg Infect Dis ; 26(7): 1612-1614, 2020 07.
Article in English | MEDLINE | ID: mdl-32568054

ABSTRACT

We report on a 70-year-old man with fever, leukopenia, thrombocytopenia, vomiting, malaise, dyspnea, and consciousness disturbance who was infected with severe fever with thrombocytopenia syndrome virus in northern Taiwan, 2019. This autochthonous case was confirmed by reverse transcription PCR, virus isolation, and genomic sequencing.


Subject(s)
Bunyaviridae Infections , Leukopenia , Phlebotomus Fever , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Aged , Bunyaviridae Infections/diagnosis , Humans , Male , Phlebovirus/genetics , Taiwan
12.
Phys Rev Lett ; 125(21): 216403, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33274987

ABSTRACT

Using a well-focused soft x-ray synchrotron radiation beam, angle-resolved photoelectron spectroscopy was applied to a full-Heusler-type Co_{2}MnGe alloy to elucidate its bulk band structure. A large parabolic band at the Brillouin zone center and several bands that cross the Fermi level near the Brillouin zone boundary were identified in line with the results from first-principles calculations. These Fermi-level crossings are ascribed to majority spin bands that are responsible for electron transport with extremely high spin polarization especially along the direction perpendicular to the interface of magnetoresistive devices. The spectroscopy confirms there is no contribution of the minority spin bands to the Fermi surface, signifying half-metallicity for the alloy. Furthermore, two topological Weyl cones with band crossing points were identified around the X point, yielding the conclusion that Co_{2}MnGe could exhibit topologically meaningful behavior such as large anomalous Hall and Nernst effects driven by the Berry flux in its half-metallic band structure.

13.
Virol J ; 17(1): 151, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33036623

ABSTRACT

BACKGROUND: Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes severe encephalitis and respiratory disease with a high mortality rate in humans. During large outbreaks of the viral disease, serological testing of serum samples could be a useful diagnostic tool, which could provide information on not only the diagnosis of NiV disease but also the history of an individual with previous exposure to the virus, thereby supporting disease control. Therefore, an efficient method for the inactivation of NiV in serum samples is required for serological diagnosis. METHODS: We determined the optimal conditions for the inactivation of NiV infectivity in human serum using heating and UV treatment. The inactivation method comprised UV irradiation with a cover of aluminum foil for 30 min and heating at 56 °C for 30 min. RESULTS: With an optimized protocol for virus inactivation, NiV infectivity in serum samples (containing 6.0 × 105 TCID50) was completely inactivated. CONCLUSIONS: We developed a recommended protocol for the effective inactivation of NiV. This protocol would enable a regional or local laboratory to safely transport or process samples, including NiV, for serological testing in its biosafety level-2 facility.


Subject(s)
Hot Temperature , Microbial Viability/radiation effects , Nipah Virus/radiation effects , Ultraviolet Rays , Virology/methods , Virus Inactivation/radiation effects , Animals , Chlorocebus aethiops , Henipavirus Infections/blood , Henipavirus Infections/virology , Humans , Nipah Virus/physiology , Research , Vero Cells
14.
Virol J ; 17(1): 120, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32746933

ABSTRACT

BACKGROUND: Human cytomegalovirus (HCMV) causes asymptomatic infections, but also causes congenital infections when women were infected with HCMV during pregnancy, and life-threatening diseases in immunocompromised patients. To better understand the mechanism of the neutralization activity against HCMV, the association of HCMV NT antibody titers was assessed with the antibody titers against each glycoprotein complex (gc) of HCMV. METHODS: Sera collected from 78 healthy adult volunteers were used. HCMV Merlin strain and HCMV clinical isolate strain 1612 were used in the NT assay with the plaque reduction assay, in which both the MRC-5 fibroblasts cells and the RPE-1 epithelial cells were used. Glycoprotein complex of gB, gH/gL complexes (gH/gL/gO and gH/gL/UL128-131A [PC]) and gM/gN were selected as target glycoproteins. 293FT cells expressed with gB, gM/gN, gH/gL/gO, or PC, were prepared and used for the measurement of the antibody titers against each gc in an indirect immunofluorescence assay (IIFA). The correlation between the IIFA titers to each gc and the HCMV-NT titers was evaluated. RESULTS: There were no significant correlations between gB-specific IIFA titers and the HCMV-NT titers in epithelial cells or between gM/gN complex-specific IIFA titers and the HCMV-NT titers. On the other hand, there was a statistically significant positive correlation between the IIFA titers to gH/gL complexes and HCMV-NT titers. CONCLUSIONS: The data suggest that the gH/gL complexes might be the major target to induce NT activity against HCMV.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytomegalovirus/immunology , Immunoglobulin G/blood , Viral Envelope Proteins/immunology , Adult , Cell Line , Cytomegalovirus/genetics , Female , Fibroblasts/virology , Humans , Male , Middle Aged , Young Adult
15.
BMC Infect Dis ; 20(1): 790, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33096994

ABSTRACT

BACKGROUND: Jamestown Canyon virus (JCV) is a mosquito-borne orthobunyavirus that causes acute febrile illness, meningitis, and meningoencephalitis, mainly among adults. JCV is widely distributed in North America and the number of JCV cases in the U.S. has increased in recent years. Therefore, the central nervous system disease caused by JCV can be considered a potentially re-emerging viral disease. However, the seroprevalence of JCV is unknown in Japan. The purpose of this study is to evaluate the seroprevalence of JCV in the Japanese population. METHODS: We used an IgG enzyme-linked immunosorbent assay (IgG-ELISA) with JCV-infected cell-lysates and/or a neutralizing (NT) antibody assay. The cut-off value of IgG-ELISA was determined using IgG-ELISA to analyze serum specimens from 37 healthy Japanese donors. IgG-ELISA was validated by assessing its sensitivity and specificity, using 38 human serum samples previously tested for the presence or absence of antibodies against JCV and snowshoe hare virus (SSHV), in an in-house NT antibody assay conducted by the Public Health Agency of Canada. The seroepidemiological study was performed using IgG-ELISA and NT antibody assay to analyze 246 human serum samples from the serum bank of the National Institute of Infectious Diseases (NIID) in Japan. RESULTS: The cut-off value of IgG-ELISA was determined at 0.20, based on the mean (- 0.075) and standard deviation (0.092) values using Japanese donors' sera. The sensitivity and the specificity of IgG-ELISA determined using 25 JCV-positive and 4 JCV-negative serum samples were 96 and 100%, respectively. Analysis of the 246 Japanese serum samples revealed that no specimen showed a higher value than the cut-off value of IgG-ELISA, and no sample tested positive by the NT antibody assay. CONCLUSIONS: Our results showed that JCV is not circulating significantly in Japan. To the best of our knowledge, this is the first report to demonstrate the seroprevalence of JCV in the general population in Japan.


Subject(s)
Antibodies, Viral/immunology , Encephalitis Virus, California/immunology , Encephalitis, California/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Neutralization Tests/methods , Adolescent , Adult , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Child , Child, Preschool , Culicidae/virology , Encephalitis, California/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Infant, Newborn , Japan/epidemiology , Male , Middle Aged , Prevalence , Sensitivity and Specificity , Seroepidemiologic Studies , Young Adult
16.
BMC Infect Dis ; 20(1): 281, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295538

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that commonly has a lethal course caused by the tick-borne Huaiyangshan banyang virus [former SFTS virus (SFTSV)]. The viral load in various body fluids in SFTS patients and the best infection control measure for SFTS patients have not been fully established. CASE PRESENTATION: A 79-year-old man was bitten by a tick while working in the bamboo grove in Nagasaki Prefecture in the southwest part of Japan. Due to the occurrence of impaired consciousness, he was referred to Nagasaki University Hospital for treatment. The serum sample tested positive for SFTSV-RNA in the genome amplification assay, and he was diagnosed with SFTS. Furthermore, SFTSV-RNA was detected from the tick that had bitten the patient. He was treated with multimodal therapy, including platelet transfusion, antimicrobials, antifungals, steroids, and continuous hemodiafiltration. His respiration was assisted with mechanical ventilation. On day 5, taking the day on which he was hospitalized as day 0, serum SFTSV-RNA levels reached a peak and then decreased. However, the cerebrospinal fluid collected on day 13 was positive for SFTSV-RNA. In addition, although serum SFTSV-RNA levels decreased below the detectable level on day 16, he was diagnosed with pneumonia with computed tomography. SFTSV-RNA was detected in the bronchoalveolar lavage fluid on day 21. By day 31, he recovered consciousness completely. The pneumonia improved by day 51, but SFTSV-RNA in the sputum remained positive for approximately 4 months after disease onset. Strict countermeasures against droplet/contact infection were continuously conducted. CONCLUSIONS: Even when SFTSV genome levels become undetectable in the serum of SFTS patients in the convalescent phase, the virus genome remains in body fluids and tissues. It may be possible that body fluids such as respiratory excretions become a source of infection to others; thus, careful infection control management is needed.


Subject(s)
Body Fluids/virology , Brain Diseases/virology , Bunyaviridae Infections/epidemiology , Gastrointestinal Hemorrhage/virology , Phlebovirus/genetics , Pneumonia/virology , RNA, Viral/blood , Aged , Animals , Brain Diseases/drug therapy , Bronchoalveolar Lavage Fluid/virology , Bunyaviridae Infections/drug therapy , Bunyaviridae Infections/virology , Combined Modality Therapy , Gastrointestinal Hemorrhage/drug therapy , Hospitals, University , Humans , Japan/epidemiology , Male , Nucleic Acid Amplification Techniques , Phlebovirus/isolation & purification , Pneumonia/drug therapy , Sputum/virology , Ticks/virology , Treatment Outcome , Viral Load
17.
Article in English | MEDLINE | ID: mdl-30858222

ABSTRACT

Acyclovir (ACV) resistance-associated mutations in two recombinant herpes simplex virus 1 (HSV-1) clones were compared. Recombinant HSV-1 lacking its thymidine kinase (TK) and expressing varicella-zoster virus (VZV) TK ectopically had no mutations in the VZV TK gene. In contrast, recombinant HSV-1 expressing HSV-1 TK ectopically harbored mutations in the HSV-1 TK gene. These results suggest that the relatively low frequency of ACV-resistant VZV is a consequence of the characteristics of the TK gene.


Subject(s)
Acyclovir/pharmacology , Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Animals , Cell Line , Chlorocebus aethiops , Drug Resistance, Viral/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 3, Human/drug effects , Herpesvirus 3, Human/genetics , Humans , Mutation/genetics , Thymidine Kinase/genetics , Vero Cells
18.
J Infect Dis ; 215(6): 865-873, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28453848

ABSTRACT

Background: Antiviral-resistant herpes simplex virus type 1 (HSV-1) has been recognized as an emerging clinical problem among patients undergoing hematopoietic stem cell transplantation (HSCT). Methods: A prospective observational study was conducted at a hematological center over a 2-year period. Oropharyngeal swab samples were serially collected each week from 1 week before and up to 100 days after HSCT and were tested for virus isolation. The HSV-1 isolates were tested for sensitivity to acyclovir (ACV). The prognosis of patients with ACV-resistant (ACVr) HSV-1 and the genetic background of the ACVr HSV-1 isolates were assessed. Results: Herpes simplex virus type 1 was isolated in 39 of 268 (15%) HSCT patients within 100 days after transplantation. Acyclovir-resistant HSV-1 emerged in 11 of these 39 patients (28%). The 100-day death rates of HSCT patients without HSV-1 shedding, those with only ACV-sensitive HSV-1 shedding, and those with ACVr HSV-1 shedding were 31%, 39%, and 64%, respectively. Patients with HSV-1, including ACVr HSV-1, shedding showed a significantly higher mortality rate. Relapsed malignancies were a significant risk factor for the emergence of ACVr HSV-1. Acyclovir resistance was attributable to viral thymidine kinase and DNA polymerase mutations in 6 and 5 patients, respectively. Conclusions: Herpes simplex virus type 1, including ACVr HSV-1, shedding was associated with poorer outcome in HSCT patients, even if HSV disease did not always occur. Patients with relapsed malignancies were at especially high risk for the emergence of ACVr HSV-1.


Subject(s)
Acyclovir/therapeutic use , Antiviral Agents/therapeutic use , Drug Resistance, Viral , Hematopoietic Stem Cell Transplantation/mortality , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Adolescent , Adult , Aged , DNA-Directed DNA Polymerase/genetics , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Herpes Simplex/virology , Herpesvirus 1, Human/isolation & purification , Humans , Japan , Male , Microbial Sensitivity Tests , Middle Aged , Multivariate Analysis , Postoperative Complications/virology , Prognosis , Proportional Hazards Models , Prospective Studies , Recurrence , Survival Rate , Thymidine Kinase/genetics , Young Adult
19.
J Virol ; 90(11): 5292-5301, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26984731

ABSTRACT

UNLABELLED: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever with a high case fatality rate caused by SFTS virus (SFTSV). Effective vaccines and specific therapies for SFTS are urgently sought, and investigation into virus-host cell interactions is expected to contribute to the development of antiviral strategies. In this study, we have developed a pseudotype vesicular stomatitis virus (VSV) bearing the unmodified Gn/Gc glycoproteins (GPs) of SFTSV (SFTSVpv). We have analyzed the host cell entry of this pseudotype virus and native SFTSV. Both SFTSVpv and SFTSV exhibited high infectivity in various mammalian cell lines. The use of lysosomotropic agents indicated that virus entry occurred via pH-dependent endocytosis. SFTSVpv and SFTSV infectivity was neutralized by serial dilutions of convalescent-phase patient sera. Entry of SFTSVpv and growth of SFTSV were increased in Raji cells expressing not only the C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) but also DC-SIGN-related (DC-SIGNR) and liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin). 25-Hydroxycholesterol (25HC), a soluble oxysterol metabolite, inhibited the cell entry of SFTSVpv and the membrane fusion of SFTSV. These results indicate that pH-dependent endocytosis of SFTSVpv and SFTSV is enhanced by attachment to certain C-type lectins. SFTSVpv is an appropriate model for the investigation of SFTSV-GP-mediated cell entry and virus neutralization at lower biosafety levels. Furthermore, 25HC may represent a potential antiviral agent against SFTS. IMPORTANCE: SFTSV is a recently discovered bunyavirus associated with SFTS, a viral hemorrhagic fever with a high case fatality rate endemic to China, South Korea, and Japan. Because little is known about the characteristics of the envelope protein and entry mechanisms of SFTSV, further studies will be required for the development of a vaccine or effective therapies. In this study, we investigated the mechanism of SFTSV cell entry using SFTSVpv and the native virus. SFTSV can grow in nonsusceptible cell lines in the presence of certain C-type lectins. Moreover, 25HC, an oxysterol metabolite, may represent a potential therapeutic inhibitor of SFTSV infection.


Subject(s)
Glycoproteins/metabolism , Phlebovirus/physiology , Thrombocytopenia/virology , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/physiology , Viral Envelope Proteins/metabolism , Virus Internalization , Animals , Cell Adhesion Molecules/metabolism , Cell Line , China , Endocytosis , Glycoproteins/chemistry , Humans , Hydrogen-Ion Concentration , Hydroxycholesterols/pharmacology , Lectins, C-Type/metabolism , Neutralization Tests , Phlebotomus Fever/virology , Phlebovirus/chemistry , Receptors, Cell Surface/metabolism , Vesicular stomatitis Indiana virus/drug effects , Vesicular stomatitis Indiana virus/growth & development
20.
Virol J ; 14(1): 59, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28320407

ABSTRACT

BACKGROUND: Acyclovir (ACV)-resistant (ACVr) herpes simplex virus type 1 (HSV-1) infections are concern in immunocompromised patients. Most clinical ACVr HSV-1 isolates have mutations in the viral thymidine kinase (vTK) genes. The vTK-associated ACVr HSV-1 shows reduced virulence, but the association between the level of resistance and the virulence of the vTK-associated ACVr HSV-1 is still unclear. METHODS: The virulence in mice of 5 vTK-associated ACVr HSV-1 clones with a variety of ACV sensitivities, when inoculated through intracerebral and corneal routes, was evaluated in comparison with ACV-sensitive (ACVs) parent HSV-1 TAS. RESULTS: Although all the 5 ACVr HSV-1 clones and ACVs HSV-1 TAS showed a similar single-step growth capacity in vitro, the virulence of ACVr HSV-1 clones significantly decreased. A 50% lethal dose (LD50) of each clone was closely correlated with 50% inhibitory concentrations (IC50), demonstrating that the higher the ACV-sensitvity, the the higher the virulence among the ACVr clones. One of the ACVr HSV-1 clones with a relatively low IC50 value maintained similar virulence to that of the parent TAS. The infection in mice with ACVr HSV-1 due to a single amino acid substitution in vTK induced local diseases, keratitis and dermatitis, while vTK-deficient clone did not. CONCLUSIONS: A statistically significant correlation between the virulence and susceptibility to ACV among ACVr HSV-1 clones was demonstrated.


Subject(s)
Acyclovir/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Viral , Herpes Simplex/pathology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/pathogenicity , Thymidine Kinase/genetics , Animals , Disease Models, Animal , Female , Herpes Simplex/virology , Herpesvirus 1, Human/enzymology , Herpesvirus 1, Human/genetics , Mice, Inbred BALB C , Mutant Proteins/genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL