Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Publication year range
1.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35568035

ABSTRACT

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/virology , Cricetinae , Epithelial Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
2.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36198317

ABSTRACT

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Antibodies, Viral , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Nature ; 603(7902): 700-705, 2022 03.
Article in English | MEDLINE | ID: mdl-35104835

ABSTRACT

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , Animals , COVID-19/epidemiology , Cell Line , Cricetinae , Humans , In Vitro Techniques , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/growth & development , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virus Replication
4.
Nature ; 602(7896): 300-306, 2022 02.
Article in English | MEDLINE | ID: mdl-34823256

ABSTRACT

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Subject(s)
COVID-19/virology , Membrane Fusion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Cricetinae , Giant Cells/metabolism , Giant Cells/virology , Male , Mesocricetus , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Virulence/genetics , Virus Replication
5.
Proc Natl Acad Sci U S A ; 119(36): e2206104119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037386

ABSTRACT

Viral hemorrhagic fevers caused by members of the order Bunyavirales comprise endemic and emerging human infections that are significant public health concerns. Despite the disease severity, there are few therapeutic options available, and therefore effective antiviral drugs are urgently needed to reduce disease burdens. Bunyaviruses, like influenza viruses (IFVs), possess a cap-dependent endonuclease (CEN) that mediates the critical cap-snatching step of viral RNA transcription. We screened compounds from our CEN inhibitor (CENi) library and identified specific structural compounds that are 100 to 1,000 times more active in vitro than ribavirin against bunyaviruses, including Lassa virus, lymphocytic choriomeningitis virus (LCMV), and Junin virus. To investigate their inhibitory mechanism of action, drug-resistant viruses were selected in culture. Whole-genome sequencing revealed that amino acid substitutions in the CEN region of drug-resistant viruses were located in similar positions as those of the CEN α3-helix loop of IFVs derived under drug selection. Thus, our studies suggest that CENi compounds inhibit both bunyavirus and IFV replication in a mechanistically similar manner. Structural analysis revealed that the side chain of the carboxyl group at the seventh position of the main structure of the compound was essential for the high antiviral activity against bunyaviruses. In LCMV-infected mice, the compounds significantly decreased blood viral load, suppressed symptoms such as thrombocytopenia and hepatic dysfunction, and improved survival rates. These data suggest a potential broad-spectrum clinical utility of CENis for the treatment of both severe influenza and hemorrhagic diseases caused by bunyaviruses.


Subject(s)
Antiviral Agents , Endonucleases , Orthobunyavirus , Animals , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Endonucleases/antagonists & inhibitors , Humans , Mice , Orthobunyavirus/drug effects , Orthobunyavirus/genetics , Orthobunyavirus/metabolism , Virus Replication/drug effects
6.
J Virol ; 97(10): e0101123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796123

ABSTRACT

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Subject(s)
Genome, Viral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Genome, Viral/genetics
7.
Microbiol Immunol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837257

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the largest single-stranded RNA virus known to date. Its genome contains multiple accessory protein genes that act against host immune responses but are not required for progeny virus production. The functions of the accessory proteins in the viral life cycle have been examined, but their involvement in viral pathogenicity remains unclear. Here, we investigated the roles of the accessory proteins in viral immunopathogenicity. To this end, recombinant SARS-CoV-2 possessing nonsense mutations in the seven accessory protein open reading frames (ORFs) (ORF3a, ORF3b, ORF6, ORF7a, ORF8, ORF9b, and ORF10) was de novo generated using an early pandemic SARS-CoV-2 strain as a backbone. We confirmed that the resultant virus (termed ORF3-10 KO) did not express accessory proteins in infected cells and retained the desired mutations in the viral genome. In cell culture, the ORF3-10 KO virus exhibited similar virus growth kinetics as the parental virus. In hamsters, ORF3-10 KO virus infection resulted in mild weight loss and reduced viral replication in the oral cavity and lung tissue. ORF3-10 KO virus infection led to mild inflammation, indicating that an inability to evade innate immune sensing because of a lack of accessory proteins impairs virus growth in vivo and results in quick elimination from the body. Overall, we showed that SARS-CoV-2 accessory proteins are involved in immunopathogenicity.

8.
Arch Virol ; 166(1): 275-280, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33201342

ABSTRACT

The infectivity of shrew-borne hantaviruses to humans is still unclear because of the lack of a serodiagnosis method for these viruses. In this study, we prepared recombinant nucleocapsid (rN) proteins of Seewis orthohantavirus, Altai orthohantavirus (ALTV), Thottapalayam thottimvirus (TPMV), and Asama orthohantavirus. Using monospecific rabbit sera, no antigenic cross-reactivity was observed. In a serosurvey of 104 samples from renal patients and 271 samples from heathy controls from Sri Lanka, one patient serum and two healthy control sera reacted with rN proteins of ALTV and TPMV, respectively. The novel assays should be applied to investigate potential infectivity of shrew-borne hantaviruses to humans.


Subject(s)
Hantavirus Infections/immunology , Hantavirus Infections/virology , Orthohantavirus/immunology , Shrews/virology , Animals , Case-Control Studies , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Nucleocapsid Proteins/immunology , Phylogeny , RNA Viruses/immunology , Rabbits , Recombinant Proteins/immunology , Serologic Tests/methods , Sri Lanka , Vero Cells
9.
Uirusu ; 70(2): 175-184, 2020.
Article in Japanese | MEDLINE | ID: mdl-34544932

ABSTRACT

Chronic kidney disease of unknown etiology (CKDu) has emerged in endemic areas of Sri Lanka since the 1990s. The disease is a chronic but fatal disease. Until now, heavy metals and agrochemicals have been suspected as the cause of CKDu, but it has been still unknown. Recently, we have found a high seroprevalence to hantavirus in CKDu patients and reported that hantavirus infection is a risk of CKDu. Hantaviruses are rodent-borne zoonotic viruses. Here, I would like to introduce a story of the research from sero-epidemiology to the search for host animals.

10.
Arch Virol ; 163(6): 1577-1584, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29488118

ABSTRACT

Hemorrhagic fever with renal syndrome (HFRS) is caused by hantavirus infection. Although host immunity is thought to be involved in the pathogenesis of HFRS, the mechanism remains to be elucidated. A mouse model of HFRS, which showed renal hemorrhage similar to that seen in patients, has been developed previously. In this study, we aimed to clarify whether CD4+ and CD8+ T cells are involved in the development of renal hemorrhage in the mouse model. At 2 days before virus inoculation, CD4+ or CD8+ T cells in 6-week-old BALB/c mice were depleted by administration of antibodies. The CD4+ T cell-depleted mice developed signs of disease such as transient weight loss, ruffled fur and renal hemorrhage as in non-depleted mice. In contrast, the CD8+ T cell-depleted mice showed no signs of disease. After determination of CTL epitopes on the viral glycoprotein in BALB/c mice, the quantity of virus-specific CTLs was analyzed using an MHC tetramer. The quantity of virus-specific CTLs markedly increased in spleens and kidneys of virus-infected mice. However, the quantity in high-pathogenic clone-infected mice was comparable to that in low-pathogenic clone-infected mice. We previously reported that the high-pathogenic clone propagated more efficiently than the low-pathogenic clone in kidneys of mice during the course of infection. Therefore, there is a possibility that the balance between quantities of the target and effector is important for disease outcome. In conclusion, this study showed that CD8+ T cells are involved in the development of renal hemorrhage in a mouse model of HFRS.


Subject(s)
CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Hantaan virus/pathogenicity , Hemorrhagic Fever with Renal Syndrome/virology , Kidney/virology , T-Lymphocytes, Cytotoxic/virology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , Hantaan virus/immunology , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/pathology , Hemorrhagic Fever with Renal Syndrome/prevention & control , Humans , Kidney/blood supply , Kidney/immunology , Kidney/pathology , Lymphocyte Count , Lymphocyte Depletion , Mice , Mice, Inbred BALB C , Peptides/chemistry , Peptides/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology
11.
Virol J ; 14(1): 13, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28122569

ABSTRACT

BACKGROUND: Hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus infection is characterized by fever, renal dysfunction and hemorrhage. An animal model mimicking symptoms of HFRS remains to be established. In this study, we evaluated the pathogenicity of an HFRS patient-derived Hantaan virus (HTNV) in adult mice. METHODS: Five clones of HTNV strain KHF 83-61 BL (KHFV) that was derived from blood of an HFRS patient were obtained by plaque cloning. The pathogenicity of the virus clones was evaluated by using 6-week-old female BALB/c mice. Sequence analysis of the viral genome was performed by conventional methods. RESULTS: All of the mice intravenously inoculated with KHFV clone (cl)-1, -2, -3 and -5 showed signs of disease such as transient body weight loss, ruffled fur, reduced activity and remarkably prominent hemorrhage in the renal medulla at 6 to 9 days post-inoculation (dpi) and then recovered. In contrast, mice intravenously inoculated with KHFV cl-4 did not show any signs of disease. We selected KHFV cl-5 and cl-4 as representative of high-pathogenic and low-pathogenic clones, respectively. Quantities of viral RNA in kidneys of KHFV cl-5-infected mice were larger than those in KHFV cl-4-infected mice at any time point examined (3, 6, 9 and 12 dpi). The quantities of viral RNA of KHFV cl-5 and cl-4 peaked at 3 dpi, which was before the onset of disease. Sequence analysis revealed that the amino acid at position 417 in the glycoprotein Gn was the sole difference in viral proteins between KHFV cl-5 and cl-4. The result suggests that amino acid at position 417 in Gn is related to the difference in pathogenicity between KHFV cl-5 and cl-4. When the inoculum of KHFV cl-5 was pretreated with a neutralizing antibody against HTNV strain 76-118, which belongs to the same serotype as KHFV clones, mice did not show any signs of disease, confirming that the disease was caused by KHFV infection. CONCLUSION: We found that an HFRS patient-derived HTNV caused renal hemorrhage in adult mice. We anticipate that this infection model will be a valuable tool for understanding the pathogenesis of HFRS.


Subject(s)
Disease Models, Animal , Hantaan virus/pathogenicity , Hemorrhage/pathology , Hemorrhagic Fever with Renal Syndrome/pathology , Hemorrhagic Fever with Renal Syndrome/virology , Kidney/pathology , Animals , Female , Genome, Viral , Hantaan virus/genetics , Hantaan virus/isolation & purification , Humans , Mice, Inbred BALB C , Oxalobacteraceae , Sequence Analysis, DNA
12.
Jpn J Vet Res ; 65(1): 39-44, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29791119

ABSTRACT

Mongolia in 2010 and 2011. A total of 76 voles belonging to the genera Myodes and Microtus were captured. Most of the voles that were seropositive to Tula virus antigen were Middendorf's voles (Microtus middendorffii (6/31)). Two of the 18 Myodes voles were also seropositive to Tula virus antigen. On the other hand, only one vole was seropositive to Puumala virus antigen. The results suggest that Tula virus was maintained in Middendorf's vole. This is the first report of detection of anti-Tula virus antibody in the central part of the Eurasia continent.


Subject(s)
Arvicolinae/blood , Orthohantavirus/immunology , Animals , Antibodies, Viral/blood , Antigens, Viral , Arvicolinae/virology , Hantavirus Infections/blood , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , Mongolia/epidemiology , RNA, Viral , Rodent Diseases/blood , Rodent Diseases/epidemiology , Rodent Diseases/virology
13.
J Virol ; 88(13): 7178-88, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24719427

ABSTRACT

UNLABELLED: Hantavirus infections are characterized by vascular hyperpermeability and neutrophilia. However, the pathogenesis of this disease is poorly understood. Here, we demonstrate for the first time that pulmonary vascular permeability is increased by Hantaan virus infection and results in the development of pulmonary edema in C.B-17 severe combined immunodeficiency (SCID) mice lacking functional T cells and B cells. Increases in neutrophils in the lung and blood were observed when pulmonary edema began to be observed in the infected SCID mice. The occurrence of pulmonary edema was inhibited by neutrophil depletion. Moreover, the pulmonary vascular permeability was also significantly suppressed by neutrophil depletion in the infected mice. Taken together, the results suggest that neutrophils play an important role in pulmonary vascular hyperpermeability and the occurrence of pulmonary edema after hantavirus infection in SCID mice. IMPORTANCE: Although hantavirus infections are characterized by the occurrence of pulmonary edema, the pathogenic mechanism remains largely unknown. In this study, we demonstrated for the first time in vivo that hantavirus infection increases pulmonary vascular permeability and results in the development of pulmonary edema in SCID mice. This novel mouse model for human hantavirus infection will be a valuable tool and will contribute to elucidation of the pathogenetic mechanisms. Although the involvement of neutrophils in the pathogenesis of hantavirus infection has largely been ignored, the results of this study using the mouse model suggest that neutrophils are involved in the vascular hyperpermeability and development of pulmonary edema in hantavirus infection. Further study of the mechanisms could lead to the development of specific treatment for hantavirus infection.


Subject(s)
Capillary Permeability/immunology , Hantavirus Infections/complications , Lung/immunology , Mice, SCID/virology , Neutrophils/immunology , Orthohantavirus/pathogenicity , Pulmonary Edema/etiology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , Blotting, Western , Cells, Cultured , Disease Models, Animal , Female , Orthohantavirus/immunology , Orthohantavirus/isolation & purification , Hantavirus Infections/immunology , Hantavirus Infections/virology , Humans , Immunoenzyme Techniques , Lung/virology , Mice , Neutrophils/metabolism , Pulmonary Edema/pathology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , T-Lymphocytes/virology
14.
Virol J ; 11: 87, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24885901

ABSTRACT

BACKGROUND: Hantaviruses are causative agents of hemorrhagic fever with renal syndrome (HFRS) and nephropathia epidemica (NE) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. There is a need for time-saving diagnostic methods. In the present study, recombinant N antigens were used as antigens in an immunochromatography strip (ICG) test to detect specific IgG antibodies. METHODS: The N-terminal 103 amino acids (aa) of Hantaan virus (HTNV), Puumala virus (PUUV) and Andes virus (ANDV) nucleocapsid (N) protein were expressed in E. coli as representative antigens of three groups (HFRS, NE and HPS-causing viruses) of hantavirus. Five different types of ICG test strips, one antigen line on one strip for each of the three selected hantaviruses (HTNV, PUUV and ANDV), three antigen lines on one strip and a mixed antigen line on one strip, were developed and sensitivities were compared. RESULTS: A total of 87 convalescent-phase patient sera, including sera from 35 HFRS patients, 36 NE patients and 16 HPS patients, and 25 sera from healthy seronegative people as negative controls were used to evaluate the ICG test. Sensitivities of the three-line strip and mixed-line strip were similar to those of the single antigen strip (97.2 to 100%). On the other hand, all of the ICG test strips showed high specificities to healthy donors. CONCLUSION: These results indicated that the ICG test with the three representative antigens is an effective serodiagnostic tool for screening and typing of hantavirus infection in humans.


Subject(s)
Antibodies, Viral/blood , Chromatography, Affinity/methods , Hantaan virus/immunology , Hantavirus Infections/diagnosis , Nucleocapsid Proteins , Orthohantavirus/immunology , Puumala virus/immunology , Antigens, Viral/genetics , Antigens, Viral/isolation & purification , Escherichia coli/genetics , Gene Expression , Hantaan virus/genetics , Orthohantavirus/genetics , Hantavirus Infections/virology , Humans , Immunoglobulin G/blood , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/isolation & purification , Puumala virus/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sensitivity and Specificity
15.
iScience ; 27(5): 109647, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38638572

ABSTRACT

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. Because the gene size of RNA viruses is typically small, NanoLuc is the primary choice for accommodation within viral genome. However, NanoLuc/Furimazine and also the conventional firefly luciferase/D-luciferin are known to exhibit relatively low tissue permeability and thus less sensitivity for visualization of deep tissue including lungs. Here, we demonstrated in vivo sufficient visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using the pair of a codon-optimized Akaluc and AkaLumine. We engineered the codon-optimized Akaluc gene possessing the similar GC ratio of SARS-CoV-2. Using the SARS-CoV-2 recombinants carrying the codon-optimized Akaluc, we visualized in vivo infection of respiratory organs, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of antivirals by monitoring changes in Akaluc signals. Overall, we offer an effective technology for monitoring viral dynamics in live animals.

16.
Nat Commun ; 15(1): 1176, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332154

ABSTRACT

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the S486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determine the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. We provide the intrinsic pathogenicity of XBB.1 and XBB.1.5 in hamsters. Importantly, we find that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC suppression. In vivo experiments using recombinant viruses reveal that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, our study identifies the two viral functions defined the difference between XBB.1 and XBB.1.5.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , Codon, Nonsense , Phylogeny , SARS-CoV-2/genetics , Biological Assay
17.
Emerg Infect Dis ; 19(1): 115-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23260149

ABSTRACT

We amplified the complete genome of the rat hepatitis E virus (HEV) Vietnam strain (V-105) and analyzed the nucleotide and amino acid sequences. The entire genome of V-105 shared only 76.8%-76.9% nucleotide sequence identities with rat HEV strains from Germany, which suggests that V-105 is a new genotype of rat HEV.


Subject(s)
Animals, Wild/virology , Genome, Viral , Hepatitis E virus/genetics , Hepatitis E/virology , RNA, Viral/genetics , Rats/virology , Animals , Base Sequence , DNA Primers , Genotype , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Molecular Sequence Data , Molecular Typing , Phylogeny , RNA, Viral/classification , RNA, Viral/isolation & purification , Rats, Wistar , Sequence Homology, Nucleic Acid , Vietnam
18.
Toxics ; 11(4)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37112589

ABSTRACT

Wild rodents are natural hosts of Leptospira spp. and are exposed to various pesticides, some of which are immunotoxic. Rodent urine is an important source of infection for humans and other animals. We evaluated the effects of pesticide exposure on Leptospira growth in mice. Diazinon, at doses of 0.2, 1, and 5 mg/kg/day, was orally administered continuously to mice infected with Leptospira interrogans serogroup Hebdomadis for 32 days. The numbers of L. interrogans in urine and kidney tissues were significantly lower in mice exposed to 5 mg/kg/day diazinon than in unexposed mice (p < 0.05). The urinary concentration of 2-isopropyl-6-methyl-4-pyrimidinol, the metabolite of diazinon, was comparable with the concentration at which viability of L. interrogans was decreased in in vitro assay, suggesting that it had toxic effects on L. interrogans in the proximal renal tubules. Diazinon exposure reinforced Leptospira-induced expression of inflammatory cytokine genes in kidney tissues, and an enhanced immune system might suppress Leptospira growth. These results suggest that diazinon exposure may not increase the risk of Leptospira transmission to humans through mice. This novel study evaluated the relationship between pesticide exposure and Leptospira infection in mice, and the results could be useful for risk assessment of leptospirosis.

19.
Commun Biol ; 6(1): 772, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488344

ABSTRACT

The unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates ongoing control measures. Given its rapid spread, the new Omicron subvariant BA.5 requires urgent characterization. Here, we comprehensively analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1. Although in vitro growth kinetics of BA.5 was comparable among the Omicron subvariants, BA.5 was much more fusogenic than BA.1 and BA.2. Airway-on-a-chip analysis showed that, among Omicron subvariants, BA.5 had enhanced ability to disrupt the respiratory epithelial and endothelial barriers. Furthermore, in our hamster model, in vivo pathogenicity of BA.5 was slightly higher than that of the other Omicron variants and less than that of ancestral B.1.1. Notably, BA.5 gains efficient virus spread compared with BA.1 and BA.2, leading to prompt immune responses. Our findings suggest that BA.5 has low pathogenicity compared with the ancestral strain but enhanced virus spread /inflammation compared with earlier Omicron subvariants.


Subject(s)
COVID-19 , Animals , Cricetinae , SARS-CoV-2 , Virulence , Inflammation
20.
Nat Commun ; 14(1): 2671, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169744

ABSTRACT

In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022.


Subject(s)
COVID-19 , Animals , Cricetinae , Phylogeny , SARS-CoV-2/genetics , Amino Acid Substitution , Biological Assay , Antibodies, Neutralizing , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL