ABSTRACT
Accelerating the attainment of carbon balance in Chinese cities has become pivotal in addressing global climate change and promoting green, low-carbon development. This study, encompassing 277 prefecture-level and above cities from 2007 to 2020, reveals a positive overall trend in China's urban carbon balance index. The evolution unfolds in two stages, demonstrating a distinct "tiered development" pattern across the eastern, central and western regions. Moreover, significant spatial agglomeration characteristics characterize China's carbon balance hot and cold spots throughout the study period, with their spatial agglomeration degree remaining stable. The standard deviation ellipse analysis confirms these hot and cold spots' alignment with China's economic development level and population distribution. The GTWR test results highlight the pronounced non-stationary characteristics of different driving factors in space and time, exhibiting variations in strength and direction among regions. Consequently, enhancing China's urban carbon balance requires tailored measures based on different areas' unique conditions and development characteristics, emphasizing a hierarchical and classified approach to leverage distinct driving factors and foster a green development system in China.
Subject(s)
Carbon , Cities , Climate Change , China , Carbon/analysis , Carbon/metabolism , Spatio-Temporal Analysis , Environmental Monitoring/methods , Carbon CycleABSTRACT
The control of carbon emissions from agriculture is imperative in addressing the challenges posed by the greenhouse effect. China must develop a specific pathway for reducing its agricultural carbon emissions, accounting for its unique circumstances and considering the impacts of trade liberalization. (1) The study revealing that agricultural trade liberalization (ATL) has a marked effect on lowering China's agricultural carbon emission intensity (ACEI), with robustness and endogeneity tests supporting these findings. (2) In the pursuit of emissions reduction, the crucial role of technology spillovers (TS) and the optimization of industrial structure (OIS) are essential. (3) The reduction in ACEI is particularly notable in coastal regions, areas with low environmental regulations and during periods characterized by more stable agricultural tariffs. This study shows a synergistic association between ATL and ACEI, indicates the potential for a mutually beneficial situation with advantages in both economic and environmental aspects.