Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525337

ABSTRACT

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Adenosine Deaminase/genetics , Interferon Type I/immunology , RNA, Double-Stranded/genetics , Adenosine/genetics , Adenosine/metabolism , Animals , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/immunology , Inosine/genetics , Inosine/metabolism , Interferon Type I/genetics , Mice , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/immunology , RNA Editing/genetics , RNA, Double-Stranded/metabolism
2.
Nature ; 607(7920): 776-783, 2022 07.
Article in English | MEDLINE | ID: mdl-35859176

ABSTRACT

Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.


Subject(s)
Adenosine Deaminase , Interferon Type I , RNA-Binding Proteins , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Apoptosis , Caspase 8/metabolism , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Mice , Mutation , Necroptosis , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
3.
Nature ; 580(7803): 391-395, 2020 04.
Article in English | MEDLINE | ID: mdl-32296175

ABSTRACT

The biological function of Z-DNA and Z-RNA, nucleic acid structures with a left-handed double helix, is poorly understood1-3. Z-DNA-binding protein 1 (ZBP1; also known as DAI or DLM-1) is a nucleic acid sensor that contains two Zα domains that bind Z-DNA4,5 and Z-RNA6-8. ZBP1 mediates host defence against some viruses6,7,9-14 by sensing viral nucleic acids6,7,10. RIPK1 deficiency, or mutation of its RIP homotypic interaction motif (RHIM), triggers ZBP1-dependent necroptosis and inflammation in mice15,16. However, the mechanisms that induce ZBP1 activation in the absence of viral infection remain unknown. Here we show that Zα-dependent sensing of endogenous ligands induces ZBP1-mediated perinatal lethality in mice expressing RIPK1 with mutated RHIM (Ripk1mR/mR), skin inflammation in mice with epidermis-specific RIPK1 deficiency (RIPK1E-KO) and colitis in mice with intestinal epithelial-specific FADD deficiency (FADDIEC-KO). Consistently, functional Zα domains were required for ZBP1-induced necroptosis in fibroblasts that were treated with caspase inhibitors or express RIPK1 with mutated RHIM. Inhibition of nuclear export triggered the Zα-dependent activation of RIPK3 in the nucleus resulting in cell death, which suggests that ZBP1 may recognize nuclear Z-form nucleic acids. We found that ZBP1 constitutively bound cellular double-stranded RNA in a Zα-dependent manner. Complementary reads derived from endogenous retroelements were detected in epidermal RNA, which suggests that double-stranded RNA derived from these retroelements may act as a Zα-domain ligand that triggers the activation of ZBP1. Collectively, our results provide evidence that the sensing of endogenous Z-form nucleic acids by ZBP1 triggers RIPK3-dependent necroptosis and inflammation, which could underlie the development of chronic inflammatory conditions-particularly in individuals with mutations in RIPK1 and CASP817-20.


Subject(s)
Inflammation/metabolism , Necroptosis , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Caspase 8/metabolism , Female , Inflammation/genetics , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Nucleic Acids/metabolism , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Skin Diseases/genetics , Skin Diseases/metabolism , Skin Diseases/pathology
4.
Nature ; 580(7804): E10, 2020 04.
Article in English | MEDLINE | ID: mdl-32322058

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
PLoS Pathog ; 18(8): e1010349, 2022 08.
Article in English | MEDLINE | ID: mdl-36007063

ABSTRACT

SARS-CoV-2 is a betacoronavirus and the etiological agent of COVID-19, a devastating infectious disease. Due to its far-reaching effect on human health, there is an urgent and growing need to understand the viral molecular biology of SARS-CoV-2 and its interaction with the host cell. SARS-CoV-2 encodes 9 predicted accessory proteins, which are presumed to be dispensable for in vitro replication, most likely having a role in modulating the host cell environment to aid viral replication. Here we show that the ORF6 accessory protein interacts with cellular Rae1 to inhibit cellular protein production by blocking mRNA export. We utilised cell fractionation coupled with mRNAseq to explore which cellular mRNA species are affected by ORF6 expression and show that ORF6 can inhibit the export of many mRNA including those encoding antiviral factors such as IRF1 and RIG-I. We also show that export of these mRNA is blocked in the context of SARS-CoV-2 infection. Together, our studies identify a novel mechanism by which SARS-CoV-2 can manipulate the host cell environment to supress antiviral responses, providing further understanding to the replication strategies of a virus that has caused an unprecedented global health crisis.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins/metabolism , Antiviral Agents , COVID-19/genetics , Humans , Immunity, Innate , Nuclear Matrix-Associated Proteins , Nucleocytoplasmic Transport Proteins/genetics , RNA, Messenger/genetics
6.
PLoS Genet ; 16(6): e1008471, 2020 06.
Article in English | MEDLINE | ID: mdl-32525879

ABSTRACT

Viruses and their hosts are locked in an evolutionary race where resistance to infection is acquired by the hosts while viruses develop strategies to circumvent these host defenses. Forming one arm of the host defense armory are cell autonomous restriction factors like Fv1. Originally described as protecting laboratory mice from infection by murine leukemia virus (MLV), Fv1s from some wild mice have also been found to restrict non-MLV retroviruses, suggesting an important role in the protection against viruses in nature. We surveyed the Fv1 genes of wild mice trapped in Thailand and characterized their restriction activities against a panel of retroviruses. An extra copy of the Fv1 gene, named Fv7, was found on chromosome 6 of three closely related Asian species of mice: Mus caroli, M. cervicolor, and M. cookii. The presence of flanking repeats suggested it arose by LINE-mediated retroduplication within their most recent common ancestor. A high degree of natural variation was observed in both Fv1 and Fv7 and, on top of positive selection at certain residues, insertions and deletions were present that changed the length of the reading frames. These genes exhibited a range of restriction phenotypes, with activities directed against gamma-, spuma-, and lentiviruses. It seems likely, at least in the case of M. caroli, that the observed gene duplication may expand the breadth of restriction beyond the capacity of Fv1 alone and that one or more such viruses have recently driven or continue to drive the evolution of the Fv1 and Fv7 genes.


Subject(s)
Evolution, Molecular , Gene Duplication , Mice/genetics , Proteins/genetics , Retroviridae Infections/genetics , Animals , Disease Resistance/genetics , Mice/virology , Retroviridae/pathogenicity , Retroviridae Infections/immunology , Retroviridae Infections/virology
7.
Mol Biol Evol ; 38(6): 2468-2474, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33560369

ABSTRACT

The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.


Subject(s)
Endogenous Retroviruses/physiology , Host-Pathogen Interactions/genetics , Leukemia Virus, Murine/physiology , Animals , Host-Pathogen Interactions/immunology , Mice
8.
Genome Res ; 29(10): 1578-1590, 2019 10.
Article in English | MEDLINE | ID: mdl-31537638

ABSTRACT

Dysregulated endogenous retroelements (EREs) are increasingly implicated in the initiation, progression, and immune surveillance of human cancer. However, incomplete knowledge of ERE activity limits mechanistic studies. By using pan-cancer de novo transcript assembly, we uncover the extent and complexity of ERE transcription. The current assembly doubled the number of previously annotated transcripts overlapping with long-terminal repeat (LTR) elements, several thousand of which were expressed specifically in one or a few related cancer types. Exemplified in melanoma, LTR-overlapping transcripts were highly predictable, disease prognostic, and closely linked with molecularly defined subtypes. They further showed the potential to affect disease-relevant genes, as well as produce novel cancer-specific antigenic peptides. This extended view of LTR elements provides the framework for functional validation of affected genes and targets for cancer immunotherapy.


Subject(s)
Neoplasms/genetics , Retroelements/genetics , Transcriptome/genetics , Gene Expression Profiling , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Phylogeny , Retroelements/immunology , Terminal Repeat Sequences/genetics , Transcriptome/immunology
9.
PLoS Pathog ; 16(5): e1008605, 2020 05.
Article in English | MEDLINE | ID: mdl-32453763

ABSTRACT

As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention.


Subject(s)
Antibodies, Viral/immunology , Calcium Channels/immunology , Cell Membrane/immunology , Endocytosis/immunology , Leukemia Virus, Murine/immunology , TRPV Cation Channels/immunology , Viral Envelope Proteins/immunology , Animals , Humans , Mice , Mice, Inbred BALB C
10.
Blood ; 133(10): 1108-1118, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30700420

ABSTRACT

Best known for presenting antigenic peptides to CD4+ T cells, major histocompatibility complex class II (MHC II) also transmits or may modify intracellular signals. Here, we show that MHC II cell-autonomously regulates the balance between self-renewal and differentiation in B-cell precursors, as well as in malignant B cells. Initiation of MHC II expression early during bone marrow B-cell development limited the occupancy of cycling compartments by promoting differentiation, thus regulating the numerical output of B cells. MHC II deficiency preserved stem cell characteristics in developing pro-B cells in vivo, and ectopic MHC II expression accelerated hematopoietic stem cell differentiation in vitro. Moreover, MHC II expression restrained growth of murine B-cell leukemia cell lines in vitro and in vivo, independently of CD4+ T-cell surveillance. Our results highlight an important cell-intrinsic contribution of MHC II expression to establishing the differentiated B-cell phenotype.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation , Histocompatibility Antigens Class II/immunology , Animals , Antigen Presentation , Bone Marrow , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , DNA-Binding Proteins/genetics , Disease Progression , Female , Histocompatibility Antigens Class II/genetics , Homeodomain Proteins/genetics , Leukemia, B-Cell/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL
11.
Proc Natl Acad Sci U S A ; 115(40): 10130-10135, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224488

ABSTRACT

Both exogenous and endogenous retroviruses have long been studied in mice, and some of the earliest mouse studies focused on the heritability of genetic factors influencing permissivity and resistance to infection. The prototypic retroviral restriction factor, Fv1, is now understood to exhibit a degree of control across multiple retroviral genera and is highly diverse within Mus To better understand the age and evolutionary history of Fv1, a comprehensive survey of the Muroidea was conducted, allowing the progenitor integration to be dated to ∼45 million years. Intact coding potential is visible beyond Mus, and sequence analysis reveals strong signatures of positive selection also within field mice, ApodemusFv1's survival for such a period implies a recurring and shifting retroviral burden imparting the necessary selective pressures-an influence likely also common to analogous factors. Regions of Fv1 adapt cooperatively, highlighting its preference for repeated structures and suggesting that this functionally constrained aspect of the retroviral capsid lattice presents a common target in the evolution of intrinsic immunity.


Subject(s)
Evolution, Molecular , Proteins/genetics , Animals , Mice , Murinae
12.
J Virol ; 92(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29046457

ABSTRACT

Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathological states, such as viral infections and certain cancers, coincide with ERV expression, suggesting that transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic. Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1-infected primary human CD4+ T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read single-molecule real-time sequencing. We show that three HML-2 proviruses-6q25.1, 8q24.3, and 19q13.42-are upregulated on average between 3- and 5-fold in HIV-1-infected CD4+ T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication. In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4+ T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication.IMPORTANCE Endogenous retroviruses inhabit big portions of our genome. Moreover, although they are mainly inert, some of the evolutionarily younger members maintain the ability to express both RNA and proteins. We have developed an approach using long-read single-molecule real-time (SMRT) sequencing that produces long reads that allow us to obtain detailed and accurate HERV-K HML-2 expression profiles. We applied this approach to study HERV-K expression in the presence or absence of productive HIV-1 infection of primary human CD4+ T cells. In addition to using SMRT sequencing, our strategy also includes the magnetic selection of the infected cells so that levels of background expression due to uninfected cells are kept at a minimum. The results presented here provide a blueprint for in-depth studies of the interactions of the authentic upregulated HERV-K HML-2 elements and HIV-1.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Endogenous Retroviruses/genetics , Gene Expression Regulation, Viral , HIV-1/physiology , Proviruses/genetics , Viral Proteins/genetics , Cells, Cultured , Endogenous Retroviruses/physiology , Genome, Human , HIV-1/genetics , Humans , Proviruses/physiology , RNA, Viral/metabolism , Viral Envelope Proteins/metabolism
13.
Nature ; 491(7426): 774-8, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-23103862

ABSTRACT

The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracts, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome. The long-term consequences for the host of interactions with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential effect of one microbial symbiont on another is even less clear. Here we study the control of ERVs in the commonly used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic MLV in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immunodeficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.


Subject(s)
Antibodies, Viral/biosynthesis , Endogenous Retroviruses/physiology , Immunocompromised Host/immunology , Virus Activation , Animal Husbandry , Animals , Antibodies, Viral/immunology , Cell Transformation, Viral , Endogenous Retroviruses/genetics , Endogenous Retroviruses/growth & development , Endogenous Retroviruses/immunology , Female , Leukemia/virology , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/growth & development , Leukemia Virus, Murine/immunology , Leukemia Virus, Murine/physiology , Lymphoma/virology , Male , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/deficiency , Receptors, Antigen, T-Cell/genetics , Recombination, Genetic , Viremia/immunology , Viremia/virology
14.
J Virol ; 88(11): 6213-23, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24648457

ABSTRACT

UNLABELLED: Human endogenous retroviruses (HERVs) are viruses that have colonized the germ line and spread through vertical passage. Only the more recently acquired HERVs, such as the HERV-K (HML-2) group, maintain coding open reading frames. Expression of HERV-Ks has been linked to different pathological conditions, including HIV infection, but our knowledge on which specific HERV-Ks are expressed in primary lymphocytes currently is very limited. To identify the most expressed HERV-Ks in an unbiased manner, we analyzed their expression patterns in peripheral blood lymphocytes using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing. We observe that three HERV-Ks (KII, K102, and K18) constitute over 90% of the total HERV-K expression in primary human lymphocytes of five different donors. We also show experimentally that two of these HERV-K env sequences (K18 and K102) retain their ability to produce full-length and posttranslationally processed envelope proteins in cell culture. We show that HERV-K18 Env can be incorporated into HIV-1 but not simian immunodeficiency virus (SIV) particles. Moreover, HERV-K18 Env incorporation into HIV-1 virions is dependent on HIV-1 matrix. Taken together, we generated high-resolution HERV-K expression profiles specific for activated human lymphocytes. We found that one of the most abundantly expressed HERV-K envelopes not only makes a full-length protein but also specifically interacts with HIV-1. Our findings raise the possibility that these endogenous retroviral Env proteins could directly influence HIV-1 replication. IMPORTANCE: Here, we report the HERV-K expression profile of primary lymphocytes from 5 different healthy donors. We used a novel deep-sequencing technology (PacBio SMRT) that produces the long reads necessary to discriminate the complexity of HERV-K expression. We find that primary lymphocytes express up to 32 different HERV-K envelopes, and that at least two of the most expressed Env proteins retain their ability to make a protein. Importantly, one of them, the envelope glycoprotein of HERV-K18, is incorporated into HIV-1 in an HIV matrix-specific fashion. The ramifications of such interactions are discussed, as the possibility of HIV-1 target tissue broadening and immune evasion are considered.


Subject(s)
Endogenous Retroviruses/metabolism , Genetic Variation , HIV-1/metabolism , Lymphocytes/virology , Viral Envelope Proteins/metabolism , Base Sequence , Blotting, Western , Computational Biology , DNA Primers/genetics , DNA, Complementary/biosynthesis , Endogenous Retroviruses/genetics , Fluorescent Antibody Technique , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Data , Plasmids/genetics , Sequence Analysis, DNA , Simian Immunodeficiency Virus/metabolism , Transcriptome , Virion/metabolism
15.
Bioessays ; 35(9): 794-803, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23864388

ABSTRACT

A number of observations have led researchers to postulate that, despite being replication-defective, human endogenous retroviruses (HERVs) may have retained the potential to cause or contribute to disease. However, mechanisms of HERV pathogenicity might differ substantially from those of modern infectious retroviruses or of the infectious precursors of HERVs. Therefore, novel pathways of HERV involvement in disease pathogenesis should be investigated. Recent technological advances in sequencing and bioinformatics are making this task increasingly feasible. The accumulating knowledge of HERV biology may also facilitate the definition and general acceptance of criteria that establish HERV pathogenicity. Here, we explore possible mechanisms whereby HERVs may cause disease and examine the evidence that either has been or should be obtained in order to decisively address the pathogenic potential of HERVs.


Subject(s)
Endogenous Retroviruses/genetics , Endogenous Retroviruses/pathogenicity , Viral Proteins/genetics , Adaptive Immunity , Computational Biology , Endogenous Retroviruses/isolation & purification , Endogenous Retroviruses/physiology , Genome, Viral , Genomics , Humans , Immunity, Innate , RNA, Viral/genetics , RNA, Viral/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Virus Diseases , Virus Replication
16.
Retrovirology ; 11: 59, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25063042

ABSTRACT

BACKGROUND: A substantial proportion of both the mouse and human genomes comprise of endogenous retroelements (REs), which include endogenous retroviruses. Over evolutionary time, REs accumulate inactivating mutations or deletions and thus lose the ability to replicate. Additionally, REs can be transcriptionally repressed by dedicated mechanisms of the host. Nevertheless, many of them still possess and express intact open reading frames, and their transcriptional activity has been associated with many physiological and pathological processes of the host. However, this association remains tenuous due to incomplete understanding of the mechanism by which RE transcription is regulated. Here, we use a bioinformatics tool to examine RE transcriptional activity, measured by microarrays, in murine and human immune cells responding to microbial stimulation. RESULTS: Immune cell activation by microbial signals in vitro caused extensive changes in the transcription not only of the host genes involved in the immune response, but also of numerous REs. Modulated REs were frequently found near or embedded within similarly-modulated host genes. Focusing on probes reporting single-integration, intergenic REs, revealed extensive transcriptional responsiveness of these elements to microbial signals. Microbial stimulation modulated RE expression in a cell-intrinsic manner. In line with these results, the transcriptional activity of numerous REs followed characteristics in different tissues according to exposure to environmental microbes and was further heavily altered during viral infection or imbalances with intestinal microbiota, both in mice and humans. CONCLUSIONS: Together, these results highlight the utility of improved methodologies in assessing RE transcription profiles in both archived and new microarray data sets. More importantly, application of this methodology suggests that immune activation, as a result of infection with pathogens or dysbiosis with commensal microbes, causes global modulation of RE transcription. RE responsiveness to external stimuli should, therefore, be considered in any association between RE transcription and disease.


Subject(s)
Endogenous Retroviruses/genetics , Microbiota , Oligonucleotide Array Sequence Analysis , Retroelements , Animals , Cells, Cultured , Genotype , Humans , Mice , Myeloid Differentiation Factor 88/physiology , Terminal Repeat Sequences , Toll-Like Receptors/physiology
17.
PLoS Pathog ; 8(5): e1002709, 2012.
Article in English | MEDLINE | ID: mdl-22589728

ABSTRACT

Effective T cell responses can decisively influence the outcome of retroviral infection. However, what constitutes protective T cell responses or determines the ability of the host to mount such responses is incompletely understood. Here we studied the requirements for development and induction of CD4+ T cells that were essential for immunity to Friend virus (FV) infection of mice, according to their TCR avidity for an FV-derived epitope. We showed that a self peptide, encoded by an endogenous retrovirus, negatively selected a significant fraction of polyclonal FV-specific CD4+ T cells and diminished the response to FV infection. Surprisingly, however, CD4+ T cell-mediated antiviral activity was fully preserved. Detailed repertoire analysis revealed that clones with low avidity for FV-derived peptides were more cross-reactive with self peptides and were consequently preferentially deleted. Negative selection of low-avidity FV-reactive CD4+ T cells was responsible for the dominance of high-avidity clones in the response to FV infection, suggesting that protection against the primary infecting virus was mediated exclusively by high-avidity CD4+ T cells. Thus, although negative selection reduced the size and cross-reactivity of the available FV-reactive naïve CD4+ T cell repertoire, it increased the overall avidity of the repertoire that responded to infection. These findings demonstrate that self proteins expressed by replication-defective endogenous retroviruses can heavily influence the formation of the TCR repertoire reactive with exogenous retroviruses and determine the avidity of the response to retroviral infection. Given the overabundance of endogenous retroviruses in the human genome, these findings also suggest that endogenous retroviral proteins, presented by products of highly polymorphic HLA alleles, may shape the human TCR repertoire that reacts with exogenous retroviruses or other infecting pathogens, leading to interindividual heterogeneity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Endogenous Retroviruses/immunology , Friend murine leukemia virus/immunology , Lymphocyte Activation , Retroviridae Infections/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Gene Products, env/biosynthesis , Gene Products, env/immunology , Humans , Mice , Mice, Inbred A , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/immunology
18.
NAR Cancer ; 5(3): zcad040, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37502711

ABSTRACT

Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.

19.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37192000

ABSTRACT

Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Endogenous Retroviruses , Lung Neoplasms , Humans , Calbindins/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Cellular Senescence/genetics , Endogenous Retroviruses/genetics , Lung Neoplasms/genetics , Proviruses/genetics
20.
Retrovirology ; 9: 23, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22439680

ABSTRACT

With the proliferation of sequence data, great challenges are posed in the correct annotation of endogenous retroviruses, which together comprise up to ten per cent of the genomes of many organisms. It is therefore essential that all sources of information are carefully considered before drawing conclusions concerning the phylogeny, distribution and biological properties of endogenous retroviruses. We suggest that such due diligence has not been applied in the description of an endogenous ecotropic retrovirus that recently appeared in Retrovirology.


Subject(s)
Cerebellum/virology , Endogenous Retroviruses/genetics , Endogenous Retroviruses/isolation & purification , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/isolation & purification , Mice/virology , Animals , Female
SELECTION OF CITATIONS
SEARCH DETAIL