Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Cell ; 151(1): 181-93, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23021224

ABSTRACT

Mononucleosomes, the basic building blocks of chromatin, contain two copies of each core histone. The associated posttranslational modifications regulate essential chromatin-dependent processes, yet whether each histone copy is identically modified in vivo is unclear. We demonstrate that nucleosomes in embryonic stem cells, fibroblasts, and cancer cells exist in both symmetrically and asymmetrically modified populations for histone H3 lysine 27 di/trimethylation (H3K27me2/3) and H4K20me1. Further, we obtained direct physical evidence for bivalent nucleosomes carrying H3K4me3 or H3K36me3 along with H3K27me3, albeit on opposite H3 tails. Bivalency at target genes was resolved upon differentiation of ES cells. Polycomb repressive complex 2-mediated methylation of H3K27 was inhibited when nucleosomes contain symmetrically, but not asymmetrically, placed H3K4me3 or H3K36me3. These findings uncover a potential mechanism for the incorporation of bivalent features into nucleosomes and demonstrate how asymmetry might set the stage to diversify functional nucleosome states.


Subject(s)
Embryonic Stem Cells/metabolism , Histone Code , Histones/metabolism , Nucleosomes/metabolism , Amino Acid Sequence , Animals , Cell Differentiation , Cell Line , Fibroblasts/metabolism , HeLa Cells , Histones/chemistry , Humans , Mice , Molecular Sequence Data , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic , Protein Processing, Post-Translational
2.
Semin Cell Dev Biol ; 135: 73-84, 2023 02 15.
Article in English | MEDLINE | ID: mdl-35277331

ABSTRACT

Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.


Subject(s)
Histones , Protein Processing, Post-Translational , Histones/genetics , Histones/metabolism , Protein Processing, Post-Translational/genetics , Chromatin/genetics , DNA/genetics
3.
J Biol Chem ; 300(8): 107527, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960040

ABSTRACT

In an unmodified state, positively charged histone N-terminal tails engage nucleosomal DNA in a manner which restricts access to not only the underlying DNA but also key tail residues subject to binding and/or modification. Charge-neutralizing modifications, such as histone acetylation, serve to disrupt this DNA-tail interaction, facilitating access to such residues. We previously showed that a polyacetylation-mediated chromatin "switch" governs the read-write capability of H3K4me3 by the MLL1 methyltransferase complex. Here, we discern the relative contributions of site-specific acetylation states along the H3 tail and extend our interrogation to other chromatin modifiers. We show that the contributions of H3 tail acetylation to H3K4 methylation by MLL1 are highly variable, with H3K18 and H3K23 acetylation exhibiting robust stimulatory effects and that this extends to the related H3K4 methyltransferase complex, MLL4. We show that H3K4me1 and H3K4me3 are found preferentially co-enriched with H3 N-terminal tail proteoforms bearing dual H3K18 and H3K23 acetylation (H3{K18acK23ac}). We further show that this effect is specific to H3K4 methylation, while methyltransferases targeting other H3 tail residues (H3K9, H3K27, & H3K36), a methyltransferase targeting the nucleosome core (H3K79), and a kinase targeting a residue directly adjacent to H3K4 (H3T3) are insensitive to tail acetylation. Together, these findings indicate a unique and robust stimulation of H3K4 methylation by H3K18 and H3K23 acetylation and provide key insight into why H3K4 methylation is often associated with histone acetylation in the context of active gene expression.

4.
Anal Bioanal Chem ; 415(9): 1627-1639, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754872

ABSTRACT

Histone proteins are essential to the regulation of the eukaryotic genome. Histone post-translational modifications (PTMs) and single-molecule combinations of these modifications (proteoforms) allow for the regulation of many DNA-templated processes, most notably transcription. Histone H4 is a part of the core histone octamer, which packages DNA into nucleosomes. Top-down proteomics allows for the inquiry of the epigenetic landscape with proteoform-level specificity. Although these approaches are well-demonstrated ex vivo, our knowledge of in vivo histone proteoform biology remains sparse. Here, we demonstrate the first in vivo quantitative top-down analysis of histone H4 and analyze the forebrains and hindbrains of differently aged mice. This reveals novel differences between the mouse forebrain and hindbrain and region-specific changes during adolescence in histone H4 PTMs and proteoforms. At 25 days of age (P25), histone H4 of the hindbrain is more acetylated than the forebrain. At 47 days of age (P47), there are fewer significant differences in histone H4 PTMs and their combinations between regions. Histone H4 of the forebrain is more acetylated in P47 than in P25 forebrains. Hindbrains exhibit the opposite difference with histone H4 of the P25 hindbrain being more acetylated than that of P47 hindbrains. These differences are mainly driven by less abundant hyperacetylated proteoforms. Transcription of histone acetyltransferases such as p300, CBP, and HAT1 is known to be higher in cortical neurons, consistent with the observed acetylation levels. Lysine 20 methylation (K20me1, K20me2, and K20me3) is notably invariant with brain region and age difference.


Subject(s)
Histones , Protein Processing, Post-Translational , Animals , Mice , Histones/metabolism , Methylation , DNA/metabolism , Brain/metabolism , Acetylation
5.
Mol Ther ; 29(7): 2294-2307, 2021 07 07.
Article in English | MEDLINE | ID: mdl-33647457

ABSTRACT

Numerous aggregation inhibitors have been developed with the goal of blocking or reversing toxic amyloid formation in vivo. Previous studies have used short peptide inhibitors targeting different amyloid ß (Aß) amyloidogenic regions to prevent aggregation. Despite the specificity that can be achieved by peptide inhibitors, translation of these strategies has been thwarted by two key obstacles: rapid proteolytic degradation in the bloodstream and poor transfer across the blood-brain barrier. To circumvent these problems, we have created a minigene to express full-length Aß variants in the mouse brain. We identify two variants, F20P and F19D/L34P, that display four key properties required for therapeutic use: neither peptide aggregates on its own, both inhibit aggregation of wild-type Aß in vitro, promote disassembly of pre-formed fibrils, and diminish toxicity of Aß oligomers. We used intraventricular injection of adeno-associated virus (AAV) to express each variant in APP/PS1 transgenic mice. Lifelong expression of F20P, but not F19D/L34P, diminished Aß levels, plaque burden, and plaque-associated neuroinflammation. Our findings suggest that AAV delivery of Aß variants may offer a novel therapeutic strategy for Alzheimer's disease. More broadly our work offers a framework for identifying and delivering peptide inhibitors tailored to other protein-misfolding diseases.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/antagonists & inhibitors , Brain/metabolism , Genetic Therapy , Genetic Vectors/administration & dosage , Mutation , Plaque, Amyloid/therapy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Dependovirus/genetics , Female , Genetic Vectors/genetics , Humans , Male , Mice , Mice, Inbred ICR , Mice, Transgenic , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism
6.
Biochem J ; 478(3): 511-532, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33567070

ABSTRACT

Histones are essential proteins that package the eukaryotic genome into its physiological state of nucleosomes, chromatin, and chromosomes. Post-translational modifications (PTMs) of histones are crucial to both the dynamic and persistent regulation of the genome. Histone PTMs store and convey complex signals about the state of the genome. This is often achieved by multiple variable PTM sites, occupied or unoccupied, on the same histone molecule or nucleosome functioning in concert. These mechanisms are supported by the structures of 'readers' that transduce the signal from the presence or absence of PTMs in specific cellular contexts. We provide background on PTMs and their complexes, review the known combinatorial function of PTMs, and assess the value and limitations of common approaches to measure combinatorial PTMs. This review serves as both a reference and a path forward to investigate combinatorial PTM functions, discover new synergies, and gather additional evidence supporting that combinations of histone PTMs are the central currency of chromatin-mediated regulation of the genome.


Subject(s)
Histone Code , Histones/metabolism , Protein Processing, Post-Translational , Acetylation , Cell Cycle , Chromatin/metabolism , Chromatin Immunoprecipitation/methods , Forecasting , Gene Expression Regulation , Histones/immunology , Humans , Mass Spectrometry/methods , Methylation , Models, Genetic , Nucleosomes/metabolism , Phosphorylation , Proteomics/methods , Signal Transduction
7.
J Biol Chem ; 295(32): 10901-10910, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32503840

ABSTRACT

Most characterized protein methylation events encompass arginine and lysine N-methylation, and only a few cases of protein methionine thiomethylation have been reported. Newly discovered oncohistone mutations include lysine-to-methionine substitutions at positions 27 and 36 of histone H3.3. In these instances, the methionine substitution localizes to the active-site pocket of the corresponding histone lysine methyltransferase, thereby inhibiting the respective transmethylation activity. SET domain-containing 3 (SETD3) is a protein (i.e. actin) histidine methyltransferase. Here, we generated an actin variant in which the histidine target of SETD3 was substituted with methionine. As for previously characterized histone SET domain proteins, the methionine substitution substantially (76-fold) increased binding affinity for SETD3 and inhibited SETD3 activity on histidine. Unexpectedly, SETD3 was active on the substituted methionine, generating S-methylmethionine in the context of actin peptide. The ternary structure of SETD3 in complex with the methionine-containing actin peptide at 1.9 Å resolution revealed that the hydrophobic thioether side chain is packed by the aromatic rings of Tyr312 and Trp273, as well as the hydrocarbon side chain of Ile310 Our results suggest that placing methionine properly in the active site-within close proximity to and in line with the incoming methyl group of SAM-would allow some SET domain proteins to selectively methylate methionine in proteins.


Subject(s)
Histone Methyltransferases/metabolism , Methionine/metabolism , Histone Methyltransferases/chemistry , Humans , Methylation , Protein Binding , Protein Processing, Post-Translational , Protein Structure, Tertiary
8.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32817218

ABSTRACT

Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode Caenorhabditis elegans, encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein. Free δ has previously been demonstrated to facilitate viral exit following intracellular expression; however, the biological significance and prevalence of CP-δ remained relatively unknown. Here, we demonstrate that Orsay CP-δ is covalently incorporated into infectious particles, the first example of any attached viral fibers known to date. The crystal structure of δ(1-101) (a deletion mutant containing the first 101 amino acid [aa] residues of δ) reveals a pentameric, 145-Å long fiber with an N-terminal coiled coil followed by multiple ß-bracelet repeats. Electron micrographs of infectious virions depict particle-associated CP-δ fibers with dimensions similar to free δ. The δ proteins from two other nematode viruses, Le Blanc and Santeuil, which both specifically infect Caenorhabditis briggsae, were also found to form fibrous molecules. Recombinant Le Blanc δ was able to block Orsay virus infection in worm culture and vice versa, suggesting these two viruses likely compete for the same cell receptor(s). Thus, we propose that while CP-δ likely mediates host cell attachment for all three nematode viruses, additional downstream factor(s) ultimately determine the host specificity and range of each virus.IMPORTANCE Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term ß-bracelets, in the intermediate shaft region. Based on sequence analysis, the ß-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted ß-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability.


Subject(s)
Capsid Proteins/chemistry , Nodaviridae/ultrastructure , Polyproteins/chemistry , Scleroproteins/chemistry , Viral Proteins/chemistry , Virion/ultrastructure , Amino Acid Sequence , Animals , Caenorhabditis elegans/virology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Host Specificity , Models, Molecular , Nodaviridae/genetics , Nodaviridae/metabolism , Polyproteins/genetics , Polyproteins/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scleroproteins/genetics , Scleroproteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics , Virion/metabolism
9.
Biochem Soc Trans ; 49(1): 93-105, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33492339

ABSTRACT

Alterations in global epigenetic signatures on chromatin are well established to contribute to tumor initiation and progression. Chromatin methylation status modulates several key cellular processes that maintain the integrity of the genome. KDM4A, a demethylase that belongs to the Fe-II dependent dioxygenase family that uses α-ketoglutarate and molecular oxygen as cofactors, is overexpressed in several cancers and is associated with an overall poor prognosis. KDM4A demethylates lysine 9 (H3K9me2/3) and lysine 36 (H3K36me3) methyl marks on histone H3. Given the complexity that exists with these marks on chromatin and their effects on transcription and proliferation, it naturally follows that demethylation serves an equally important role in these cellular processes. In this review, we highlight the role of KDM4A in transcriptional modulation, either dependent or independent of its enzymatic activity, arising from the amplification of this demethylase in cancer. KDM4A modulates re-replication of distinct genomic loci, activates cell cycle inducers, and represses proteins involved in checkpoint control giving rise to proliferative damage, mitotic disturbances and chromosomal breaks, ultimately resulting in genomic instability. In parallel, emerging evidence of non-nuclear substrates of epigenetic modulators emphasize the need to investigate the role of KDM4A in regulating non-nuclear substrates and evaluate their contribution to genomic instability in this context. The existence of promising KDM-specific inhibitors makes these demethylases an attractive target for therapeutic intervention in cancers.


Subject(s)
Genomic Instability/genetics , Jumonji Domain-Containing Histone Demethylases/physiology , Animals , Cell Transformation, Neoplastic/genetics , Histones/metabolism , Humans , Methylation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Processing, Post-Translational/genetics , Signal Transduction/genetics
10.
Blood ; 134(24): 2183-2194, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31697807

ABSTRACT

Altered metabolism fuels 2 hallmark properties of cancer cells: unlimited proliferation and differentiation blockade. Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of bioenergetics crucial for glucose metabolism in acute myeloid leukemia (AML), and its inhibition delays leukemogenesis, but whether the metabolic function of AMPK alters the AML epigenome remains unknown. Here, we demonstrate that AMPK maintains the epigenome of MLL-rearranged AML by linking acetyl-coenzyme A (CoA) homeostasis to Bromodomain and Extra-Terminal domain (BET) protein recruitment to chromatin. AMPK deletion reduced acetyl-CoA and histone acetylation, displacing BET proteins from chromatin in leukemia-initiating cells. In both mouse and patient-derived xenograft AML models, treating with AMPK and BET inhibitors synergistically suppressed AML. Our results provide a therapeutic rationale to target AMPK and BET for AML therapy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetyl Coenzyme A/metabolism , Cell Cycle Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Leukemic , Histones/metabolism , Homeostasis , Humans , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/pathology , Mice , Neoplasm Grading , Protein Binding , Xenograft Model Antitumor Assays
11.
PLoS Pathog ; 13(2): e1006231, 2017 02.
Article in English | MEDLINE | ID: mdl-28241071

ABSTRACT

Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown. Using a combination of electron microscopy, X-ray crystallography, computational and biophysical analyses, here we show that the Orsay δ protein forms a ~420-Å long, pentameric fiber with an N-terminal α-helical bundle, a ß-stranded filament in the middle, and a C-terminal head domain. The pentameric nature of the δ fiber has been independently confirmed by both mass spectrometry and analytical ultracentrifugation. Recombinant Orsay capsid containing CP-δ shows protruding long fibers with globular heads at the distal end. Mutant viruses with disrupted CP-δ fibers were generated by organism-based reverse genetics. These viruses were found to be either non-viable or with poor infectivity according to phenotypic and qRT-PCR analyses. Furthermore, addition of purified δ proteins to worm culture greatly reduced Orsay infectivity in a sequence-specific manner. Based on the structure resemblance between the Orsay CP-δ fiber and the fibers from reovirus and adenovirus, we propose that CP-δ functions as a cell attachment protein to mediate Orsay entry into worm intestine cells.


Subject(s)
Caenorhabditis elegans/virology , Capsid Proteins/ultrastructure , RNA Viruses/physiology , Virus Internalization , Animals , Capsid Proteins/chemistry , Circular Dichroism , Crystallography, X-Ray , Mass Spectrometry , Microscopy, Electron, Transmission , Mutagenesis, Site-Directed , Organisms, Genetically Modified , RNA Virus Infections , RNA Viruses/ultrastructure , Virion/chemistry , Virion/ultrastructure
12.
Proteomics ; 18(11): e1700442, 2018 06.
Article in English | MEDLINE | ID: mdl-29667342

ABSTRACT

Post-translational modifications (PTMs) of histones are important epigenetic regulatory mechanisms that are often dysregulated in cancer. We employ middle-down proteomics to investigate the PTMs and proteoforms of histone H4 during cell cycle progression. We use pH gradient weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) for on-line liquid chromatography-mass spectrometry analysis to separate and analyze the proteoforms of histone H4. This procedure provides enhanced separation of proteoforms, including positional isomers, and simplifies downstream data analysis. We use ultrahigh mass accuracy and resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to unambiguously distinguish between acetylation and tri-methylation (∆m = 0.036 Da). In total, we identify and quantify 233 proteoforms of histone H4 in two breast cancer cell lines. We observe significant increases in S1 phosphorylation during mitosis, implicating an important role in mitotic chromatin condensation. A decrease of K20 unmodified proteoforms is observed as the cell cycle progresses, corresponding to an increase of K20 mono- and di-methylation. Acetylation at K5, K8, K12, and K16 declines as cells traverse from S phase to mitosis, suggesting cell cycle-dependence and an important role during chromatin replication and condensation. These new insights into the epigenetics of the cell cycle may provide new diagnostic and prognostic biomarkers.


Subject(s)
Breast Neoplasms/metabolism , Cell Cycle , Histones/metabolism , Protein Processing, Post-Translational , Proteome/analysis , Acetylation , Breast Neoplasms/pathology , Chromatin/metabolism , Epigenesis, Genetic , Female , Humans , Methylation , Phosphorylation , Protein Isoforms , Tumor Cells, Cultured
13.
Biochemistry ; 57(39): 5672-5682, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30199238

ABSTRACT

A growing body of evidence supports a steric exclusion and wrapping model for DNA unwinding in which hexameric helicases interact with the excluded single-stranded DNA (ssDNA) in addition to the encircled strand. Interactions with the excluded ssDNA have been shown to be mediated primarily by electrostatic interactions, but base stacking with surface-exposed tyrosine residues is an alternative hypothesis. Here, we mutated several external tyrosine and positively charged residues from full-length Sulfolobus solfataricus MCM along the proposed path of excluded strand binding and assessed their impact on DNA unwinding. Four of the five tyrosine residues had significant decreases in their level of unwinding, and one, Y519A, located within the α/ß-α linker region of the C-terminal domain, had the most severe perturbation attributed to the disruption of hexamerization. The Y519 mutant exhibits an enhanced and stabilized secondary structure that is modulated by temperature, binding DNA with a higher apparent affinity and suggesting a pathway for hexameric assembly. Hydrogen/deuterium exchange coupled to mass spectrometry was used to map deuterium uptake differences between wild-type and Y519A apo structures highlighting global differences in solvent accessible areas consistent with altered quaternary structure. Two of the five electrostatic mutants had significantly reduced levels of DNA unwinding and combined with previous mutations better define the exterior binding path. The importance of the electrostatic excluded strand interaction was confirmed by use of morpholino DNA substrates that showed analogous reduced unwinding rates. These results better define the hexameric assembly and influence of the excluded strand interactions in controlling DNA unwinding by the archaeal MCM complex.


Subject(s)
Archaeal Proteins/metabolism , DNA, Single-Stranded/metabolism , Minichromosome Maintenance Proteins/metabolism , Sulfolobus solfataricus/enzymology , Amino Acid Sequence , Archaeal Proteins/genetics , Base Sequence , Binding Sites , DNA, Single-Stranded/genetics , Enzyme Assays , Minichromosome Maintenance Proteins/genetics , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Multimerization/genetics , Static Electricity
14.
Nature ; 487(7405): 114-8, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22722849

ABSTRACT

Sirtuin proteins regulate diverse cellular pathways that influence genomic stability, metabolism and ageing. SIRT7 is a mammalian sirtuin whose biochemical activity, molecular targets and physiological functions have been unclear. Here we show that SIRT7 is an NAD(+)-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase that stabilizes the transformed state of cancer cells. Genome-wide binding studies reveal that SIRT7 binds to promoters of a specific set of gene targets, where it deacetylates H3K18Ac and promotes transcriptional repression. The spectrum of SIRT7 target genes is defined in part by its interaction with the cancer-associated E26 transformed specific (ETS) transcription factor ELK4, and comprises numerous genes with links to tumour suppression. Notably, selective hypoacetylation of H3K18Ac has been linked to oncogenic transformation, and in patients is associated with aggressive tumour phenotypes and poor prognosis. We find that deacetylation of H3K18Ac by SIRT7 is necessary for maintaining essential features of human cancer cells, including anchorage-independent growth and escape from contact inhibition. Moreover, SIRT7 is necessary for a global hypoacetylation of H3K18Ac associated with cellular transformation by the viral oncoprotein E1A. Finally, SIRT7 depletion markedly reduces the tumorigenicity of human cancer cell xenografts in mice. Together, our work establishes SIRT7 as a highly selective H3K18Ac deacetylase and demonstrates a pivotal role for SIRT7 in chromatin regulation, cellular transformation programs and tumour formation in vivo.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Lysine/metabolism , Sirtuins/metabolism , Acetylation , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Animals , Base Sequence , Binding Sites , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Chromatin/metabolism , Contact Inhibition , Disease Progression , Humans , Mice , Neoplasm Transplantation , Nucleotide Motifs , Phenotype , Promoter Regions, Genetic , Repressor Proteins/metabolism , Sirtuins/deficiency , Sirtuins/genetics , Transcription, Genetic , Transplantation, Heterologous , ets-Domain Protein Elk-4/metabolism
15.
Mol Cell Proteomics ; 15(3): 818-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26209608

ABSTRACT

Breast cancer was the second leading cause of cancer related mortality for females in 2014. Recent studies suggest histone H1 phosphorylation may be useful as a clinical biomarker of breast and other cancers because of its ability to recognize proliferative cell populations. Although monitoring a single phosphorylated H1 residue is adequate to stratify high-grade breast tumors, expanding our knowledge of how H1 is phosphorylated through the cell cycle is paramount to understanding its role in carcinogenesis. H1 analysis by bottom-up MS is challenging because of the presence of highly homologous sequence variants expressed by most cells. These highly basic proteins are difficult to analyze by LC-MS/MS because of the small, hydrophilic nature of peptides produced by tryptic digestion. Although bottom-up methods permit identification of several H1 phosphorylation events, these peptides are not useful for observing the combinatorial post-translational modification (PTM) patterns on the protein of interest. To complement the information provided by bottom-up MS, we utilized a top-down MS/MS workflow to permit identification and quantitation of H1 proteoforms related to the progression of breast cells through the cell cycle. Histones H1.2 and H1.4 were observed in MDA-MB-231 metastatic breast cells, whereas an additional histone variant, histone H1.3, was identified only in nonneoplastic MCF-10A cells. Progressive phosphorylation of histone H1.4 was identified in both cell lines at mitosis (M phase). Phosphorylation occurred first at S172 followed successively by S187, T18, T146, and T154. Notably, phosphorylation at S173 of histone H1.2 and S172, S187, T18, T146, and T154 of H1.4 significantly increases during M phase relative to S phase, suggesting that these events are cell cycle-dependent and may serve as markers for proliferation. Finally, we report the observation of the H1.2 SNP variant A18V in MCF-10A cells.


Subject(s)
Breast Neoplasms/metabolism , Histones/metabolism , Tandem Mass Spectrometry/methods , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Humans , Phosphorylation , Polymorphism, Single Nucleotide , Protein Processing, Post-Translational
16.
J Biol Chem ; 291(24): 12467-12480, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27044751

ABSTRACT

The archaeal minichromosomal maintenance (MCM) helicase from Sulfolobus solfataricus (SsoMCM) is a model for understanding structural and mechanistic aspects of DNA unwinding. Although interactions of the encircled DNA strand within the central channel provide an accepted mode for translocation, interactions with the excluded strand on the exterior surface have mostly been ignored with regard to DNA unwinding. We have previously proposed an extension of the traditional steric exclusion model of unwinding to also include significant contributions with the excluded strand during unwinding, termed steric exclusion and wrapping (SEW). The SEW model hypothesizes that the displaced single strand tracks along paths on the exterior surface of hexameric helicases to protect single-stranded DNA (ssDNA) and stabilize the complex in a forward unwinding mode. Using hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance MS, we have probed the binding sites for ssDNA, using multiple substrates targeting both the encircled and excluded strand interactions. In each experiment, we have obtained >98.7% sequence coverage of SsoMCM from >650 peptides (5-30 residues in length) and are able to identify interacting residues on both the interior and exterior of SsoMCM. Based on identified contacts, positively charged residues within the external waist region were mutated and shown to generally lower DNA unwinding without negatively affecting the ATP hydrolysis. The combined data globally identify binding sites for ssDNA during SsoMCM unwinding as well as validating the importance of the SEW model for hexameric helicase unwinding.


Subject(s)
Archaeal Proteins/metabolism , DNA Helicases/metabolism , DNA, Archaeal/metabolism , Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Minichromosome Maintenance Proteins/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Binding Sites/genetics , Cyclotrons , DNA Helicases/chemistry , DNA Helicases/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Fourier Analysis , Mass Spectrometry/instrumentation , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/genetics , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Domains , Protein Multimerization , Substrate Specificity , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism
17.
Rapid Commun Mass Spectrom ; 31(2): 207-217, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27813191

ABSTRACT

RATIONALE: Bottom-up tandem mass spectrometry (MS/MS) is regularly used in proteomics to identify proteins from a sequence database. De novo sequencing is also available for sequencing peptides with relatively short sequence lengths. We recently showed that paired Lys-C and Lys-N proteases produce peptides of identical mass and similar retention time, but different tandem mass spectra. Such parallel experiments provide complementary information, and allow for up to 100% MS/MS sequence coverage. METHODS: Here, we report digestion by paired Lys-C and Lys-N proteases of a seven-protein mixture: human hemoglobin alpha, bovine carbonic anhydrase 2, horse skeletal muscle myoglobin, hen egg white lysozyme, bovine pancreatic ribonuclease, bovine rhodanese, and bovine serum albumin, followed by reversed-phase nanoflow liquid chromatography, collision-induced dissociation, and 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. RESULTS: Matched pairs of product peptide ions of equal precursor mass and similar retention times from each digestion are compared, leveraging single-residue transposed information with independent interferences to confidently identify fragment ion types, residues, and peptides. Selected pairs of product ion mass spectra for de novo sequenced protein segments from each member of the mixture are presented. CONCLUSIONS: Pairs of the transposed product ions as well as complementary information from the parallel experiments allow for both high MS/MS coverage for long peptide sequences and high confidence in the amino acid identification. Moreover, the parallel experiments in the de novo sequencing reduce false-positive matches of product ions from the single-residue transposed peptides from the same segment, and thereby further improve the confidence in protein identification. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Peptide Fragments/analysis , Proteins/analysis , Sequence Analysis, Protein/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Humans , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Hydrolases/metabolism , Proteins/chemistry , Proteins/metabolism
18.
Mol Cell ; 33(4): 417-27, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19250903

ABSTRACT

Lysine 56 acetylation in the helical core of histone H3 opens yeast chromatin and enables histone gene transcription, DNA replication, and DNA repair and prevents epigenetic silencing. While K56Ac is globally abundant in yeast and flies, its presence has been uncertain in mammals. We show here using mass spectrometry and genome-wide analyses that K56Ac is present in human embryonic stem cells (hESCs), overlapping strongly at active and inactive promoters with the binding of the key regulators of pluripotency, NANOG, SOX2, and OCT4. This includes also the canonical histone gene promoters and those for the hESC-specific microRNAs. K56Ac then relocates to developmental genes upon cellular differentiation. Thus the K56Ac state more accurately reflects the epigenetic differences between hESCs and somatic cells than other active histone marks such as H3 K4 trimethylation and K9 acetylation. These results suggest that K56Ac is involved in the human core transcriptional network of pluripotency.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Regulatory Networks , Histones/metabolism , Lysine/metabolism , Acetylation , Animals , Chromatin Immunoprecipitation , Embryonic Stem Cells/cytology , Genome, Human , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lysine/chemistry , Mice , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Protein Processing, Post-Translational/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
19.
J Proteome Res ; 15(9): 3196-203, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27431976

ABSTRACT

Histone variants are known to play a central role in genome regulation and maintenance. However, many variants are inaccessible by antibody-based methods or bottom-up tandem mass spectrometry due to their highly similar sequences. For many, the only tractable approach is with intact protein top-down tandem mass spectrometry. Here, ultra-high-resolution FT-ICR MS and MS/MS yield quantitative relative abundances of all detected HeLa H2A and H2B isobaric and isomeric variants with a label-free approach. We extend the analysis to identify and relatively quantitate 16 proteoforms from 12 sequence variants of histone H2A and 10 proteoforms of histone H2B from three other cell lines: human embryonic stem cells (WA09), U937, and a prostate cancer cell line LaZ. The top-down MS/MS approach provides a path forward for more extensive elucidation of the biological role of many previously unstudied histone variants and post-translational modifications.


Subject(s)
Histones/analysis , Proteomics/methods , Cell Line , Cyclotrons , Genetic Variation , Genomic Structural Variation , Histones/genetics , Humans , Protein Processing, Post-Translational , Tandem Mass Spectrometry/methods
20.
J Biol Chem ; 290(31): 19319-33, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26088143

ABSTRACT

Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the ß subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8ß4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Sulfite Reductase (NADPH)/chemistry , Amino Acid Sequence , Catalytic Domain , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL