Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Haematologica ; 108(2): 555-567, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36134453

ABSTRACT

Aberrant activity of the SUMOylation pathway has been associated with MYC overexpression and poor prognosis in aggressive B-cell lymphoma (BCL) and other malignancies. Recently developed small-molecule inhibitors of SUMOylation (SUMOi) target the heterodimeric E1 SUMO activation complex (SAE1/UBA2). Here, we report that activated MYC signaling is an actionable molecular vulnerability in vitro and in a preclinical murine in vivo model of MYC-driven BCL. While SUMOi conferred direct effects on MYC-driven lymphoma cells, SUMO inhibition also resulted in substantial remodeling of various subsets of the innate and specific immunity in vivo. Specifically, SUMOi increased the number of memory B cells as well as cytotoxic and memory T cells, subsets that are attributed a key role within a coordinated anti-tumor immune response. In summary, our data constitute pharmacologic SUMOi as a powerful therapy in a subset of BCL causing massive remodeling of the normal B-cell and T-cell compartment.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Mice , Animals , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Lymphoma/drug therapy , Lymphoma, B-Cell/drug therapy , Biomarkers , Ubiquitin-Activating Enzymes/metabolism
2.
J Biol Chem ; 296: 100291, 2021.
Article in English | MEDLINE | ID: mdl-33453283

ABSTRACT

Androglobin (ADGB) represents the latest addition to the globin superfamily in metazoans. The chimeric protein comprises a calpain domain and a unique circularly permutated globin domain. ADGB expression levels are most abundant in mammalian testis, but its cell-type-specific expression, regulation, and function have remained unexplored. Analyzing bulk and single-cell mRNA-Seq data from mammalian tissues, we found that-in addition to the testes-ADGB is prominently expressed in the female reproductive tract, lungs, and brain, specifically being associated with cell types forming motile cilia. Correlation analysis suggested coregulation of ADGB with FOXJ1, a crucial transcription factor of ciliogenesis. Investigating the transcriptional regulation of the ADGB gene, we characterized its promoter using epigenomic datasets, exogenous promoter-dependent luciferase assays, and CRISPR/dCas9-VPR-mediated activation approaches. Reporter gene assays revealed that FOXJ1 indeed substantially enhanced luciferase activity driven by the ADGB promoter. ChIP assays confirmed binding of FOXJ1 to the endogenous ADGB promoter region. We dissected the minimal sequence required for FOXJ1-dependent regulation and fine mapped the FOXJ1 binding site to two evolutionarily conserved regions within the ADGB promoter. FOXJ1 overexpression significantly increased endogenous ADGB mRNA levels in HEK293 and MCF-7 cells. Similar results were observed upon RFX2 overexpression, another key transcription factor in ciliogenesis. The complex transcriptional regulation of the ADGB locus was illustrated by identifying a distal enhancer, responsible for synergistic regulation by RFX2 and FOXJ1. Finally, cell culture studies indicated an ADGB-dependent increase in the number of ciliated cells upon overexpression of the full-length protein, confirming a ciliogenesis-associated role of ADGB in mammals.


Subject(s)
Calmodulin-Binding Proteins/genetics , Cilia/genetics , Forkhead Transcription Factors/genetics , Globins/genetics , Regulatory Factor X Transcription Factors/genetics , Transcriptome , Animals , Binding Sites , Brain/cytology , Brain/growth & development , Brain/metabolism , Calmodulin-Binding Proteins/metabolism , Cattle , Cilia/metabolism , Enhancer Elements, Genetic , Female , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Gene Ontology , Globins/metabolism , HEK293 Cells , HeLa Cells , Humans , Lung/cytology , Lung/growth & development , Lung/metabolism , MCF-7 Cells , Male , Molecular Sequence Annotation , Ovary/cytology , Ovary/growth & development , Ovary/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Regulatory Factor X Transcription Factors/metabolism , Sequence Analysis, RNA , Testis/cytology , Testis/growth & development , Testis/metabolism
3.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37494060

ABSTRACT

Single-cell RNA sequencing has become an important method to identify cell types, delineate the trajectories of cell differentiation in whole organisms, and understand the heterogeneity in cellular responses. Nevertheless, sample collection and processing remain a severe bottleneck for single-cell RNA sequencing experiments. Cell isolation protocols often lead to significant changes in the transcriptomes of cells, requiring novel methods to preserve cell states. Here, we developed and benchmarked protocols using glyoxal as a fixative for single-cell RNA sequencing applications. Using Drop-seq methodology, we detected a large number of transcripts and genes from glyoxal-fixed Drosophila cells after single-cell RNA sequencing. The effective glyoxal fixation of transcriptomes in Drosophila and human cells was further supported by a high correlation of gene expression data between glyoxal-fixed and unfixed samples. Accordingly, we also found highly expressed genes overlapping to a large extent between experimental conditions. These results indicated that our fixation protocol did not induce considerable changes in gene expression and conserved the transcriptome for subsequent single-cell isolation procedures. In conclusion, we present glyoxal as a suitable fixative for Drosophila cells and potentially cells of other species that allow high-quality single-cell RNA sequencing applications.


Subject(s)
Glyoxal , Transcriptome , Animals , Humans , Fixatives , Drosophila/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods , RNA , High-Throughput Nucleotide Sequencing
4.
Cell Syst ; 14(5): 346-362.e6, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37116498

ABSTRACT

Cellular and organismal phenotypes are controlled by complex gene regulatory networks. However, reference maps of gene function are still scarce across different organisms. Here, we generated synthetic genetic interaction and cell morphology profiles of more than 6,800 genes in cultured Drosophila cells. The resulting map of genetic interactions was used for machine learning-based gene function discovery, assigning functions to genes in 47 modules. Furthermore, we devised Cytoclass as a method to dissect genetic interactions for discrete cell states at the single-cell resolution. This approach identified an interaction of Cdk2 and the Cop9 signalosome complex, triggering senescence-associated secretory phenotypes and immunogenic conversion in hemocytic cells. Together, our data constitute a genome-scale resource of functional gene profiles to uncover the mechanisms underlying genetic interactions and their plasticity at the single-cell level.


Subject(s)
Drosophila , Gene Regulatory Networks , Animals , Gene Regulatory Networks/genetics , Phenotype , Drosophila/genetics
5.
J Hematol Oncol ; 16(1): 79, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481608

ABSTRACT

BACKGROUND: Third-generation chimeric antigen receptor (CAR)-engineered T cells (CARTs) might improve clinical outcome of patients with B cell malignancies. This is the first report on a third-generation CART dose-escalating, phase-1/2 investigator-initiated trial treating adult patients with refractory and/or relapsed (r/r) acute lymphoblastic leukemia (ALL). METHODS: Thirteen patients were treated with escalating doses of CD19-directed CARTs between 1 × 106 and 50 × 106 CARTs/m2. Leukapheresis, manufacturing and administration of CARTs were performed in-house. RESULTS: For all patients, CART manufacturing was feasible. None of the patients developed any grade of Immune effector cell-associated neurotoxicity syndrome (ICANS) or a higher-grade (≥ grade III) catokine release syndrome (CRS). CART expansion and long-term CART persistence were evident in the peripheral blood (PB) of evaluable patients. At end of study on day 90 after CARTs, ten patients were evaluable for response: Eight patients (80%) achieved a complete remission (CR), including five patients (50%) with minimal residual disease (MRD)-negative CR. Response and outcome were associated with the administered CART dose. At 1-year follow-up, median overall survival was not reached and progression-free survival (PFS) was 38%. Median PFS was reached on day 120. Lack of CD39-expression on memory-like T cells was more frequent in CART products of responders when compared to CART products of non-responders. After CART administration, higher CD8 + and γδ-T cell frequencies, a physiological pattern of immune cells and lower monocyte counts in the PB were associated with response. CONCLUSION: In conclusion, third-generation CARTs were associated with promising clinical efficacy and remarkably low procedure-specific toxicity, thereby opening new therapeutic perspectives for patients with r/r ALL. Trial registration This trial was registered at www. CLINICALTRIALS: gov as NCT03676504.


Subject(s)
Neurotoxicity Syndromes , Humans , Adult , Leukapheresis , Adaptor Proteins, Signal Transducing , Antigens, CD19/therapeutic use
6.
Methods Mol Biol ; 2540: 93-111, 2022.
Article in English | MEDLINE | ID: mdl-35980574

ABSTRACT

The fly Drosophila is a versatile model organism that has led to fascinating biological discoveries. In the past few years, Drosophila researchers have used single-cell RNA-sequencing (scRNA-seq) to gain insights into the cellular composition, and developmental processes of various tissues and organs. Given the success of single-cell technologies a variety of computational tools and software packages were developed to enable and facilitate the analysis of scRNA-seq data. In this book chapter we want to give guidance on analyzing droplet-based scRNA-seq data from Drosophila. We will initially describe the preprocessing commonly done for Drosophila, point out possible downstream analyses, and finally highlight computational methods developed using Drosophila scRNA-seq data.


Subject(s)
Single-Cell Analysis , Transcriptome , Animals , Drosophila/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software
7.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35499080

ABSTRACT

Activated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell-mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM). Loss of the MHC-I APM is a frequent cause of resistance to cancer immunotherapies, and the pharmacological inhibition of SUMOylation (SUMOi) resulted in reduced activity of the transcriptional repressor scaffold attachment factor B (SAFB) and induction of the MHC-I APM. Consequently, SUMOi enhanced the presentation of antigens and the susceptibility of tumor cells to CD8+ T cell-mediated killing. Importantly, SUMOi also triggered the activation of CD8+ T cells and thereby drove a feed-forward loop amplifying the specific antitumor immune response. In summary, we showed that activated SUMOylation allowed tumor cells to evade antitumor immunosurveillance, and we have expanded the understanding of SUMOi as a rational therapeutic strategy for enhancing the efficacy of cancer immunotherapies.


Subject(s)
Antigen Presentation , Neoplasms , Histocompatibility Antigens Class I , Humans , Immune Evasion , Neoplasms/pathology , Sumoylation
SELECTION OF CITATIONS
SEARCH DETAIL