Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Circ Res ; 133(1): 6-21, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37232152

ABSTRACT

BACKGROUND: Obesity induces cardiomyopathy characterized by hypertrophy and diastolic dysfunction. Whereas mitophagy mediated through an Atg7 (autophagy related 7)-dependent mechanism serves as an essential mechanism to maintain mitochondrial quality during the initial development of obesity cardiomyopathy, Rab9 (Ras-related protein Rab-9A)-dependent alternative mitophagy takes over the role during the chronic phase. Although it has been postulated that DRP1 (dynamin-related protein 1)-mediated mitochondrial fission and consequent separation of the damaged portions of mitochondria are essential for mitophagy, the involvement of DRP1 in mitophagy remains controversial. We investigated whether endogenous DRP1 is essential in mediating the 2 forms of mitophagy during high-fat diet (HFD)-induced obesity cardiomyopathy and, if so, what the underlying mechanisms are. METHODS: Mice were fed either a normal diet or an HFD (60 kcal %fat). Mitophagy was evaluated using cardiac-specific Mito-Keima mice. The role of DRP1 was evaluated using tamoxifen-inducible cardiac-specific Drp1knockout (Drp1 MCM) mice. RESULTS: Mitophagy was increased after 3 weeks of HFD consumption. The induction of mitophagy by HFD consumption was completely abolished in Drp1 MCM mouse hearts, in which both diastolic and systolic dysfunction were exacerbated. The increase in LC3 (microtubule-associated protein 1 light chain 3)-dependent general autophagy and colocalization between LC3 and mitochondrial proteins was abolished in Drp1 MCM mice. Activation of alternative mitophagy was also completely abolished in Drp1 MCM mice during the chronic phase of HFD consumption. DRP1 was phosphorylated at Ser616, localized at the mitochondria-associated membranes, and associated with Rab9 and Fis1 (fission protein 1) only during the chronic, but not acute, phase of HFD consumption. CONCLUSIONS: DRP1 is an essential factor in mitochondrial quality control during obesity cardiomyopathy that controls multiple forms of mitophagy. Although DRP1 regulates conventional mitophagy through a mitochondria-associated membrane-independent mechanism during the acute phase, it acts as a component of the mitophagy machinery at the mitochondria-associated membranes in alternative mitophagy during the chronic phase of HFD consumption.


Subject(s)
Cardiomyopathies , Mitophagy , Animals , Mice , Autophagy/physiology , Cardiomyopathies/genetics , Dynamins/genetics , Dynamins/metabolism , Heart , Mitochondrial Dynamics , Mitophagy/physiology , Obesity/genetics
2.
Development ; 147(21)2020 08 03.
Article in English | MEDLINE | ID: mdl-32611604

ABSTRACT

Little is known about the effects of NPC1 deficiency in brain development and whether these effects contribute to neurodegeneration in Niemann-Pick disease type C (NPC). Degeneration of cerebellar Purkinje cells occurs at an earlier stage and to a greater extent in NPC; therefore, we analyzed the effect of NPC1 deficiency on microglia and on climbing fiber synaptic refinement during cerebellar postnatal development using the Npc1nmf164 mouse. Our analysis revealed that NPC1 deficiency leads to early phenotypic changes in microglia that are not associated with an innate immune response. However, the lack of NPC1 in Npc1nmf164 mice significantly affected the early development of microglia by delaying the radial migration, increasing the proliferation and impairing the differentiation of microglia precursor cells during postnatal development. Additionally, increased phagocytic activity of differentiating microglia was observed at the end of the second postnatal week in Npc1nmf164 mice. Moreover, significant climbing fiber synaptic refinement deficits along with an increased engulfment of climbing fiber synaptic elements by microglia were found in Npc1nmf164 mice, suggesting that profound developmental defects in microglia and synaptic connectivity might precede and predispose Purkinje cells to early neurodegeneration in NPC.


Subject(s)
Cerebellum/growth & development , Intracellular Signaling Peptides and Proteins/deficiency , Microglia/metabolism , Microglia/pathology , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Animals , Animals, Newborn , Cell Differentiation , Cell Movement , Cell Proliferation , Cerebellum/immunology , Disease Models, Animal , Immunity, Innate , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Niemann-Pick C1 Protein , Phagocytosis , Synapses/metabolism , Weaning
3.
Cells ; 12(11)2023 05 27.
Article in English | MEDLINE | ID: mdl-37296606

ABSTRACT

Attachment of a detached retina does not always restore vision to pre-injury levels, even if the attachment is anatomically successful. The problem is due in part to long-term damage to photoreceptor synapses. Previously, we reported on damage to rod synapses and synaptic protection using a Rho kinase (ROCK) inhibitor (AR13503) after retinal detachment (RD). This report documents the effects of detachment, reattachment, and protection by ROCK inhibition on cone synapses. Conventional confocal and stimulated emission depletion (STED) microscopy were used for morphological assessment and electroretinograms for functional analysis of an adult pig model of RD. RDs were examined 2 and 4 h after injury or two days later when spontaneous reattachment had occurred. Cone pedicles respond differently than rod spherules. They lose their synaptic ribbons, reduce invaginations, and change their shape. ROCK inhibition protects against these structural abnormalities whether the inhibitor is applied immediately or 2 h after the RD. Functional restoration of the photopic b-wave, indicating cone-bipolar neurotransmission, is also improved with ROCK inhibition. Successful protection of both rod and cone synapses with AR13503 suggests this drug will (1) be a useful adjunct to subretinal administration of gene or stem cell therapies and (2) improve recovery of the injured retina when treatment is delayed.


Subject(s)
Retinal Detachment , Retinal Rod Photoreceptor Cells , Animals , Swine , Retinal Rod Photoreceptor Cells/physiology , Retinal Detachment/drug therapy , rho-Associated Kinases , Retinal Cone Photoreceptor Cells , Synapses
4.
PLoS One ; 18(11): e0294312, 2023.
Article in English | MEDLINE | ID: mdl-38033125

ABSTRACT

Lysosomes play important roles in catabolism, nutrient sensing, metabolic signaling, and homeostasis. NPC1 deficiency disrupts lysosomal function by inducing cholesterol accumulation that leads to early neurodegeneration in Niemann-Pick type C (NPC) disease. Mitochondria pathology and deficits in NPC1 deficient cells are associated with impaired lysosomal proteolysis and metabolic signaling. It is thought that activation of the transcription factor TFEB, an inducer of lysosome biogenesis, restores lysosomal-autophagy activity in lysosomal storage disorders. Here, we investigated the effect of trehalose, a TFEB activator, in the mitochondria pathology of NPC1 mutant fibroblasts in vitro and in mouse developmental Purkinje cells ex vivo. We found that in NPC1 mutant fibroblasts, serum starvation or/and trehalose treatment, both activators of TFEB, reversed mitochondria fragmentation to a more tubular mitochondrion. Trehalose treatment also decreased the accumulation of Filipin+ cholesterol in NPC1 mutant fibroblasts. However, trehalose treatment in cerebellar organotypic slices (COSCs) from wild-type and Npc1nmf164 mice caused mitochondria fragmentation and lack of dendritic growth and degeneration in developmental Purkinje cells. Our data suggest, that although trehalose successfully restores mitochondria length and decreases cholesterol accumulation in NPC1 mutant fibroblasts, in COSCs, Purkinje cells mitochondria and dendritic growth are negatively affected possibly through the overactivation of the TFEB-lysosomal-autophagy pathway.


Subject(s)
Mitochondria , Niemann-Pick Disease, Type C , Trehalose , Animals , Humans , Mice , Cholesterol/metabolism , Fibroblasts/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Mitochondria/metabolism , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Purkinje Cells/pathology , Trehalose/pharmacology
5.
Sci Rep ; 13(1): 5665, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024714

ABSTRACT

Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in the Npc1 or Npc2 genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using the Npc1nmf164 mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164 PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found in Npc1-deficient mice. However, in contrast to Npc1nmf164 mice, Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.


Subject(s)
Niemann-Pick Disease, Type C , Purkinje Cells , Mice , Animals , Purkinje Cells/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Disease Models, Animal , Lysosomes/metabolism
6.
Sci Rep ; 9(1): 14722, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31605022

ABSTRACT

Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia in the molecular layer (ML) are activated and contacting dendrites at early stages of NPC, when no loss of PCs is detected. During the progression of PCs degeneration in Npc1nmf164 mice, accumulation of phagosomes and autofluorescent material in microglia at the ML coincided with the degeneration of dendrites and PCs. Feeding Npc1nmf164 mice a western diet (WD) increased microglia activation and corresponded with a more extensive degeneration of dendrites but not PC somata. Together our data suggest that microglia contribute to the degeneration of PCs by interacting, engulfing and phagocytosing their dendrites while the cell somata are still present.


Subject(s)
Dendrites/metabolism , Microglia/metabolism , Nerve Degeneration/metabolism , Niemann-Pick Disease, Type C/metabolism , Purkinje Cells/metabolism , Animals , Cerebellum/metabolism , Cerebellum/pathology , Diet, Western , Disease Models, Animal , Female , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Niemann-Pick C1 Protein , Phagocytosis/genetics , Phagosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL