Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Clin Endocrinol Metab ; 107(1): e57-e70, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34431493

ABSTRACT

PURPOSE: To evaluate the safety and potential efficacy of LLF580, a genetically engineered variant of human fibroblast growth factor-21, for triglyceride lowering, weight loss, and hepatic fat reduction. METHODS: A multicenter, double-blind, parallel design trial in obese, mildly hypertriglyceridemic adults randomized (1:1) to LLF580 300 mg or placebo subcutaneously every 4 weeks for 3 doses. RESULTS: Of 64 randomized study participants, 61 (mean ± SD: age 45 ± 11 years, 49% male, 80/15/5% Caucasian/African American/other, body mass index 36.1 ± 3.8 kg/m2) received LLF580 (n = 30) or placebo (n = 31) at 7 research sites in the United States. LLF580 lowered serum triglycerides by 54% (least square mean placebo adjusted change from baseline), total cholesterol 7%, low-density lipoprotein cholesterol 12%, and increased high-density lipoprotein cholesterol 36% compared with placebo (all P < 0.001) over 12 weeks. Substantial reduction of liver fat of 52% over placebo (P < 0.001) was also demonstrated in the setting of improved liver function tests including alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, the composite enhanced liver fibrosis score, and N-terminal type III collagen propeptide (all P < 0.05). Insulin and C-peptide levels and insulin resistance by homeostatic model assessment for insulin resistance were all lower, and adiponectin higher with LLF580 treatment compared with placebo, whereas fasting glucose and glycated hemoglobin were unchanged. Reductions in biomarkers of bone formation without differences in markers of bone resorption were observed. LLF580 was generally safe and well tolerated, except for higher incidence of generally mild to moderate gastrointestinal adverse effects. CONCLUSIONS: In obese, mildly hypertriglyceridemic adults, LLF580 was generally safe and demonstrated beneficial effects on serum lipids, liver fat, and biomarkers of liver injury, suggesting it may be effective for treatment of select metabolic disorders including hypertriglyceridemia and nonalcoholic fatty liver disease. Assessments of longer term safety and efficacy are warranted. CLINICALTRIALS.GOV IDENTIFIER: NCT03466203.


Subject(s)
Biomarkers/blood , Body Mass Index , Fatty Liver/prevention & control , Fibroblast Growth Factors/administration & dosage , Hypertriglyceridemia/therapy , Obesity/physiopathology , Triglycerides/blood , Adult , Double-Blind Method , Female , Fibroblast Growth Factors/genetics , Follow-Up Studies , Humans , Hypertriglyceridemia/genetics , Hypertriglyceridemia/pathology , Male , Middle Aged , Prognosis
2.
Endocrinology ; 162(9)2021 09 01.
Article in English | MEDLINE | ID: mdl-33951176

ABSTRACT

Fibroblast growth factor (FGF) 21 is a member of the FGF family of proteins. The biological activity of FGF21 was first shown to induce insulin-independent glucose uptake in adipocytes through the GLUT1 transporter. Subsequently, it was shown to have effects on the liver to increase fatty acid oxidation. FGF21 treatment provides beneficial metabolic effects in both animal models and patients with obesity, type 2 diabetes mellitus (T2D) and/or fatty liver disease. In this paper, we revisited the original finding and found that insulin-independent glucose uptake in adipocytes is preserved in the presence of an insulin receptor antagonist. Using a 40-kDa PEGylated (PEG) and half-life extended form of FGF21 (FGF21-PEG), we extended these in vitro results to 2 different mouse models of diabetes. FGF21-PEG normalized plasma glucose in streptozotocin-treated mice, a model of type 1 diabetes (T1D), without restoring pancreatic ß-cell function. FGF21-PEG also normalized plasma glucose levels and improved glucose tolerance in mice chronically treated with an insulin competitive insulin receptor antagonist, a model of autoimmune/type-B insulin resistance. These data extend the pharmacological potential of FGF21 beyond the settings of T2D, fatty liver, and obesity.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Fibroblast Growth Factors/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , HEK293 Cells , Humans , Hyperglycemia/blood , Hyperglycemia/etiology , Hyperglycemia/pathology , Hyperglycemia/prevention & control , Insulin/metabolism , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , Obesity/complications , Obesity/pathology , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/drug effects , Receptor, Insulin/physiology , Streptozocin
3.
Proteins ; 78(12): 2571-86, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20589640

ABSTRACT

LDL cholesterol (LDL-C) is cleared from plasma via cellular uptake and internalization processes that are largely mediated by the low-density lipoprotein cholesterol receptor (LDL-R). LDL-R is targeted for lysosomal degradation by association with proprotein convertase subtilisin-kexin type 9 (PCSK9). Gain of function mutations in PCSK9 can result in excessive loss of receptors and dyslipidemia. On the other hand, receptor-sparing phenomena, including loss-of-function mutations or inhibition of PCSK9, can lead to enhanced clearance of plasma lipids. We hypothesize that desolvation and resolvation processes, in many cases, constitute rate-determining steps for protein-ligand association and dissociation, respectively. To test this hypothesis, we analyzed and compared the predicted desolvation properties of wild-type versus gain-of-function mutant Asp374Tyr PCSK9 using WaterMap, a new in silico method for predicting the preferred locations and thermodynamic properties of water solvating proteins ("hydration sites"). We compared these results with binding kinetics data for PCSK9, full-length LDL-R ectodomain, and isolated EGF-A repeat. We propose that the fast k(on) and entropically driven thermodynamics observed for PCSK9-EGF-A binding stem from the functional replacement of water occupying stable PCSK9 hydration sites (i.e., exchange of PCSK9 H-bonds from water to polar EGF-A groups). We further propose that the relatively fast k(off) observed for EGF-A unbinding stems from the limited displacement of solvent occupying unstable hydration sites. Conversely, the slower k(off) observed for EGF-A and LDL-R unbinding from Asp374Tyr PCSK9 stems from the destabilizing effects of this mutation on PCSK9 hydration sites, with a concomitant increase in the persistence of the bound complex.


Subject(s)
Computer Simulation , Epidermal Growth Factor/chemistry , Protein Conformation , Serine Endopeptidases/chemistry , Binding Sites , Cell Line , Crystallography, X-Ray , Epidermal Growth Factor/genetics , Humans , Models, Molecular , Mutation , Proprotein Convertase 9 , Proprotein Convertases , Receptors, LDL/chemistry , Serine Endopeptidases/genetics , Solvents/chemistry , Structure-Activity Relationship , Thermodynamics , Water/chemistry
4.
Biochem J ; 406(2): 203-7, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17608623

ABSTRACT

PCSK9 (proprotein convertase subtilisin/kexin 9) is a secreted serine protease that regulates cholesterol homoeostasis by inducing post-translational degradation of hepatic LDL-R [LDL (low-density lipoprotein) receptor]. Intramolecular autocatalytic processing of the PCSK9 zymogen in the endoplasmic reticulum results in a tightly associated complex between the prodomain and the catalytic domain. Although the autocatalytic processing event is required for proper secretion of PCSK9, the requirement of proteolytic activity in the regulation of LDL-R is currently unknown. Co-expression of the prodomain and the catalytic domain in trans allowed for production of a catalytically inactive secreted form of PCSK9. This catalytically inactive PCSK9 was characterized and shown to be functionally equivalent to the wild-type protein in lowering cellular LDL uptake and LDL-R levels. These findings suggest that, apart from autocatalytic processing, the protease activity of PCSK9 is not necessary for LDL-R regulation.


Subject(s)
Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Cell Line , Humans , Mutation/genetics , Serine/genetics , Serine/metabolism , Serine Endopeptidases/genetics
5.
J Med Chem ; 60(16): 7099-7107, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28771350

ABSTRACT

The observed structure-activity relationship of three distinct ATP noncompetitive With-No-Lysine (WNK) kinase inhibitor series, together with a crystal structure of a previously disclosed allosteric inhibitor bound to WNK1, led to an overlay hypothesis defining core and side-chain relationships across the different series. This in turn enabled an efficient optimization through scaffold morphing, resulting in compounds with a good balance of selectivity, cellular potency, and pharmacokinetic profile, which were suitable for in vivo proof-of-concept studies. When dosed orally, the optimized compound reduced blood pressure in mice overexpressing human WNK1, and induced diuresis, natriuresis and kaliuresis in spontaneously hypertensive rats (SHR), confirming that this mechanism of inhibition of WNK kinase activity is effective at regulating cardiovascular homeostasis.


Subject(s)
Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Allosteric Regulation , Animals , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/pharmacokinetics , HEK293 Cells , Humans , Male , Mice, Transgenic , Minor Histocompatibility Antigens , Molecular Docking Simulation , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , WNK Lysine-Deficient Protein Kinase 1
6.
ACS Chem Biol ; 11(12): 3338-3346, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27712055

ABSTRACT

Protein kinases are known for their highly conserved adenosine triphosphate (ATP)-binding site, rendering the discovery of selective inhibitors a major challenge. In theory, allosteric inhibitors can achieve high selectivity by targeting less conserved regions of the kinases, often with an added benefit of retaining efficacy under high physiological ATP concentration. Although often overlooked in favor of ATP-site directed approaches, performing a screen at high ATP concentration or stringent hit triaging with high ATP concentration offers conceptually simple methods of identifying inhibitors that bind outside the ATP pocket. Here, we applied the latter approach to the With-No-Lysine (K) (WNK) kinases to discover lead molecules for a next-generation antihypertensive that requires a stringent safety profile. This strategy yielded several ATP noncompetitive WNK1-4 kinase inhibitors, the optimization of which enabled cocrystallization with WNK1, revealing an allosteric binding mode consistent with the observed exquisite specificity for WNK1-4 kinases. The optimized compound inhibited rubidium uptake by sodium chloride cotransporter 1 (NKCC1) in HT29 cells, consistent with the reported physiology of WNK kinases in renal electrolyte handling.


Subject(s)
Allosteric Regulation/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Drug Discovery , HEK293 Cells , HT29 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Solute Carrier Family 12, Member 2/metabolism , WNK Lysine-Deficient Protein Kinase 1
7.
J Med Chem ; 47(7): 1602-4, 2004 Mar 25.
Article in English | MEDLINE | ID: mdl-15027849

ABSTRACT

The melanocortin 4 receptor (MC4R) plays an important role in body weight regulation and energy homeostasis. Administration of peptidic MC4R antagonists (usually by intracerebro ventricular injection) has been shown in the literature to increase body weight and/or food intake in several rodent models. We report here the identification of a novel nonpeptidic MC4R antagonist and its effects on tumor-induced weight loss in mice following peripheral administration.


Subject(s)
Benzamidines/chemical synthesis , Emaciation/drug therapy , Imidazoles/chemical synthesis , Neoplasms/complications , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Administration, Cutaneous , Animals , Benzamidines/chemistry , Benzamidines/pharmacology , Emaciation/etiology , Imidazoles/chemistry , Imidazoles/pharmacology , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Radioligand Assay , Structure-Activity Relationship , Transplantation, Heterologous
11.
J Immunol ; 171(3): 1542-55, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12874248

ABSTRACT

Chemokine-induced T lymphocyte recruitment to the lung is critical for allergic inflammation, but chemokine signaling pathways are incompletely understood. Regulator of G protein signaling (RGS)16, a GTPase accelerator (GTPase-activating protein) for Galpha subunits, attenuates signaling by chemokine receptors in T lymphocytes, suggesting a role in the regulation of lymphocyte trafficking. To explore the role of RGS16 in T lymphocyte-dependent immune responses in a whole-organism model, we generated transgenic (Tg) mice expressing RGS16 in CD4(+) and CD8(+) cells. rgs16 Tg T lymphocytes migrated to CC chemokine ligand 21 or CC chemokine ligand 12 injection sites in the peritoneum, but not to CXC chemokine ligand 12. In a Th2-dependent model of allergic pulmonary inflammation, CD4(+) lymphocytes bearing CCR3, CCR5, and CXCR4 trafficked in reduced numbers to the lung after acute inhalation challenge with allergen (OVA). In contrast, spleens of sensitized and challenged Tg mice contained increased numbers of CD4(+)CCR3(+) cells producing more Th2-type cytokines (IL-4, IL-5, and IL-13), which were associated with increased airway hyperreactivity. Migration of Tg lymphocytes to the lung parenchyma after adoptive transfer was significantly reduced compared with wild-type lymphocytes. Naive lymphocytes displayed normal CCR3 and CXCR4 expression and cytokine responses, and compartmentation in secondary lymphoid organs was normal without allergen challenge. These results suggest that RGS16 may regulate T lymphocyte activation in response to inflammatory stimuli and migration induced by CXCR4, CCR3, and CCR5, but not CCR2 or CCR7.


Subject(s)
Chemotaxis, Leukocyte/immunology , Inflammation/immunology , Lung/pathology , Lymphocyte Activation/immunology , Proteins/physiology , RGS Proteins/physiology , Signal Transduction/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , Acute Disease , Adoptive Transfer , Allergens/administration & dosage , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Chemotaxis, Leukocyte/genetics , Crosses, Genetic , Cytokines/biosynthesis , Cytokines/metabolism , Female , Homeostasis/genetics , Homeostasis/immunology , Humans , Immunization , Inflammation/genetics , Inflammation/pathology , Lung/immunology , Lymphocyte Activation/genetics , Lymphoid Tissue/growth & development , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Ovalbumin/administration & dosage , Ovalbumin/immunology , Protein Biosynthesis , Proteins/genetics , RGS Proteins/biosynthesis , RGS Proteins/genetics , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/physiology , Signal Transduction/genetics , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/transplantation , Up-Regulation/genetics , Up-Regulation/immunology
12.
Blood ; 100(6): 2046-55, 2002 Sep 15.
Article in English | MEDLINE | ID: mdl-12200365

ABSTRACT

Notch signaling plays a critical role in cell fate determination in many developmental systems, including the hematopoietic system. We and others have recently cloned a novel Notch ligand called Delta4. In this study, we show the effect of retrovirus-mediated ectopic expression of Delta4 in hematopoietic cells. Lethally irradiated mice transplanted with bone marrow cells expressing Delta4 initially suffered from leukopenia and thrombocytopenia. Although all lineages were affected, the deficit in B cells and platelets was the most durable and profound. A rapid expansion of CD4(+)CD8(+) cells occurred shortly after transplantation. CD4(+)CD8(+) cells progressively invaded all tissues analyzed except the thymus, which surprisingly was atrophic. CD4(+)CD8(+) cells were mainly non-Delta4-transduced cells, strongly suggesting that the disease was not cell autonomous. Around 15 weeks after transplantation, mice died from this severe lymphoproliferative disorder, which was not transplantable in late-stage disease into secondary recipients. Mice transduced with a soluble form of Delta4 behaved like control mice. Characterization of early hematopoietic development revealed that Delta4 expression impaired formation of day-12 spleen colony-forming units (CFU-Ss) and, to a greater extent, pre-CFU-Ss. No effect was observed on myeloid colony-forming cells (CFU-Cs), indicating that Delta4 specifically acted on the earliest hematopoietic stem cell compartment. These results show that constitutive expression of Delta4 in hematopoietic cells impairs the development of B cells, platelets, and early stem cells and induces a lethal lymphoproliferative disease.


Subject(s)
Blood Proteins/pharmacokinetics , Growth Substances/pharmacokinetics , Hematopoiesis/drug effects , Intercellular Signaling Peptides and Proteins , Lymphoproliferative Disorders/etiology , Adaptor Proteins, Signal Transducing , Animals , B-Lymphocytes/drug effects , Blood Proteins/genetics , Blood Proteins/pharmacology , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Calcium-Binding Proteins , Genetic Vectors , Growth Substances/genetics , Growth Substances/pharmacology , Hematopoietic Stem Cells/metabolism , Humans , Ligands , Lymphoproliferative Disorders/metabolism , Membrane Proteins , Mice , Mice, Inbred C57BL , Receptors, Notch , Retroviridae/genetics , T-Lymphocytes/drug effects , Tissue Distribution , Transduction, Genetic
13.
Bioorg Med Chem Lett ; 14(14): 3721-5, 2004 Jul 16.
Article in English | MEDLINE | ID: mdl-15203150

ABSTRACT

A novel series of imidazole-based small molecule antagonists of the melanocortin 4 receptor (MC4-R) is reported. Members of this series have been identified, which exhibit sub-micromolar binding affinity for the MC4-R, functional potency <100nM, and good oral exposure in rat. Antagonists of the MC4-R are potentially useful in the therapeutic treatment of involuntary weight loss due to advanced age or disease (e.g. cancer or AIDS), an area of large, unmet medical need.


Subject(s)
Body Weight/drug effects , Imidazoles/chemical synthesis , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Animals , Binding Sites , Body Weight/physiology , Cells, Cultured , Imidazoles/pharmacology , Rats , Receptor, Melanocortin, Type 4/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL