Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
Add more filters

Publication year range
1.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37597514

ABSTRACT

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Subject(s)
Colitis , Receptors, G-Protein-Coupled , Animals , Mice , Allosteric Regulation , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go , Inflammation/drug therapy , Ketone Bodies , Niacin/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism
2.
Nature ; 624(7992): 672-681, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37935376

ABSTRACT

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Amines/metabolism , Amphetamine/metabolism , Antipsychotic Agents/chemistry , Antipsychotic Agents/metabolism , Binding Sites , Catecholamines/agonists , Catecholamines/chemistry , Catecholamines/metabolism , Cryoelectron Microscopy , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/ultrastructure , Ligands , Molecular Dynamics Simulation , Mutation , Polypharmacology , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/ultrastructure , Species Specificity , Substrate Specificity
3.
Opt Lett ; 49(5): 1161-1164, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426963

ABSTRACT

Optical molecular tomography (OMT) can monitor glioblastomas in small animals non-invasively. Although deep learning (DL) methods have made remarkable achievements in this field, improving its generalization against diverse reconstruction systems remains a formidable challenge. In this Letter, a free space matching network (FSMN-Net) was presented to overcome the parameter mismatch problem in different reconstruction systems. Specifically, a novel, to the best of our knowledge, manifold convolution operator was designed by considering the mathematical model of OMT as a space matching process. Based on the dynamic domain expansion concept, an end-to-end fully convolutional codec further integrates this operator to realize robust reconstruction with voxel-level accuracy. The results of numerical simulations and in vivo experiments demonstrate that the FSMN-Net can stably generate high-resolution reconstruction volumetric images under different reconstruction systems.

4.
FASEB J ; 37(2): e22783, 2023 02.
Article in English | MEDLINE | ID: mdl-36705056

ABSTRACT

Capsular residual lens epithelial cells (CRLEC) undergo differentiation to fiber cells for lens regeneration or tansdifferentiation to myofibroblasts leading to posterior capsular opacification (PCO) after cataract surgery. The underlying regulatory mechanism remains unclear. Using human lens epithelial cell lines and the ex vivo cultured rat lens capsular bag model, we found that the lens epithelial cells secrete HSP90α extracellularly (eHSP90) through an autophagy-associated pathway. Administration of recombinant GST-HSP90α protein or its M-domain induces the elongation of rat CRLEC cells with concomitant upregulation of the crucial fiber cell transcriptional factor PROX1and its downstream targets, ß- and γ-crystallins and structure proteins. This regulation is abolished by PROX1 siRNA. GST-HSP90α upregulates PROX1 by binding to LRP1 and activating LRP1-AKT mediated YAP degradation. The upregulation of GST-HSP90α on PROX1 expression and CRLEC cell elongation is inhibited by LRP1 and AKT inhibitors, but activated by YAP-1 inhibitor (VP). These data demonstrated that the capsular residue epithelial cells upregulate and secrete eHSP90α, which in turn drive the differentiation of lens epithelial cell to fiber cells. The recombinant HSP90α protein is a potential novel differentiation regulator during lens regeneration.


Subject(s)
Lens, Crystalline , Proto-Oncogene Proteins c-akt , Rats , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation , Lens, Crystalline/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Epithelial Cells/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/genetics
5.
J Surg Res ; 299: 343-352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795557

ABSTRACT

INTRODUCTION: Ovarian metastases from gastrointestinal cancers such as colorectal cancer, also known as Krukenberg tumors (KTs), present unique challenges in management due to diagnostic uncertainty, decreased responsiveness to systemic therapies compared to other sites of metastasis, and associated debilitating symptomatology. Thus, we sought to characterize our institutional outcomes in metastatic colorectal cancer (mCRC) patients with KTs. METHODS: A retrospective single-institution study was performed identifying adult, female patients from 2012 to 2021 with a diagnosis of mCRC. Patient demographics and clinicopathologic characteristics were collected and analyzed. Descriptive statistics, univariate and multivariable analyses, and Kaplan-Meier survival analyses were performed. RESULTS: Of 235 mCRC patients, 45 (19.1%) had KTs, 41 (91.1%) of whom had KTs in conjunction with other metastatic sites. Other initial sites of metastasis included the liver (n = 93, 39.6%), lung (n = 28, 11.9%), and peritoneum (n = 18, 7.7%). In the KT cohort, the median age was 48 y, 53.3% were non-Hispanic White, 100% had microsatellite stable tumors, 33.3% had Kristen Rat Sarcoma Virus (KRAS) mutations, and 6.7% had V-raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) mutations. Fifty five point six percent of KT patients underwent cytoreductive surgery (CRS), 24.4% underwent palliative debulking, and 20% underwent no surgical intervention. Reasons for not undergoing CRS were disease-related (n = 14, 70%), due to poor performance status (n = 1, 5%), or both (n = 5, 25%). Five-year overall survival was 48.2% in KT patients who underwent CRS. Poor tumor grade was an independent predictor of mortality (hazard ratio 10.69, 95% confidence interval 1.20-95.47, P = 0.03). CONCLUSIONS: Almost 90% of our patient cohort with KTs from mCRC experience additional sites of metastasis. Around half of KT patients who underwent CRS were alive at 5 y.


Subject(s)
Colorectal Neoplasms , Krukenberg Tumor , Ovarian Neoplasms , Humans , Female , Middle Aged , Retrospective Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Krukenberg Tumor/therapy , Krukenberg Tumor/mortality , Krukenberg Tumor/diagnosis , Krukenberg Tumor/secondary , Adult , Aged , Ovarian Neoplasms/mortality , Ovarian Neoplasms/therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/diagnosis , Kaplan-Meier Estimate , Treatment Outcome , Cytoreduction Surgical Procedures , Proto-Oncogene Proteins B-raf/genetics
6.
Helicobacter ; 29(3): e13100, 2024.
Article in English | MEDLINE | ID: mdl-38873839

ABSTRACT

BACKGROUND: The formation of gallstones is often accompanied by chronic inflammation, and the mechanisms underlying inflammation and stone formation are not fully understood. Our aim is to utilize single-cell transcriptomics, bulk transcriptomics, and microbiome data to explore key pathogenic bacteria that may contribute to chronic inflammation and gallstone formation, as well as their associated mechanisms. METHODS: scRNA-seq data from a gallstone mouse model were extracted from the Gene Expression Omnibus (GEO) database and analyzed using the FindCluster() package for cell clustering analysis. Bulk transcriptomics data from patients with gallstone were also extracted from the GEO database, and intergroup functional differences were assessed using GO and KEGG enrichment analysis. Additionally, 16S rRNA sequencing was performed on gallbladder mucosal samples from asymptomatic patients with gallstone (n = 6) and liver transplant donor gallbladder mucosal samples (n = 6) to identify key bacteria associated with stone formation and chronic inflammation. Animal models were constructed to investigate the mechanisms by which these key pathogenic bacterial genera promote gallstone formation. RESULTS: Analysis of scRNA-seq data from the gallstone mouse model (GSE179524) revealed seven distinct cell clusters, with a significant increase in neutrophil numbers in the gallstone group. Analysis of bulk transcriptomics data from patients with gallstone (GSE202479) identified chronic inflammation in the gallbladder, potentially associated with dysbiosis of the gallbladder microbiota. 16S rRNA sequencing identified Helicobacter pylori as a key bacterium associated with gallbladder chronic inflammation and stone formation. CONCLUSIONS: Dysbiosis of the gallbladder mucosal microbiota is implicated in gallstone disease and leads to chronic inflammation. This study identified H. pylori as a potential key mucosal resident bacterium contributing to gallstone formation and discovered its key pathogenic factor CagA, which causes damage to the gallbladder mucosal barrier. These findings provide important clues for the prevention and treatment of gallstones.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Epithelial Cells , Gallbladder , Gallstones , Helicobacter pylori , Animals , Gallstones/microbiology , Gallstones/pathology , Epithelial Cells/microbiology , Mice , Humans , Gallbladder/microbiology , Gallbladder/pathology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Helicobacter pylori/physiology , RNA, Ribosomal, 16S/genetics , Disease Models, Animal , Permeability , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Female , Male , Mice, Inbred C57BL
7.
Acta Pharmacol Sin ; 45(6): 1201-1213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491160

ABSTRACT

The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.


Subject(s)
Hippo Signaling Pathway , Interleukin-6 , Liver Regeneration , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Receptor, Angiotensin, Type 2 , Signal Transduction , Animals , Male , Mice , Acetaminophen , Adaptor Proteins, Signal Transducing/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Interleukin-6/metabolism , Liver/metabolism , Liver/drug effects , Liver Regeneration/drug effects , Liver Regeneration/physiology , Mice, Knockout , Protein Serine-Threonine Kinases/metabolism , Receptor, Angiotensin, Type 2/metabolism , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , YAP-Signaling Proteins/metabolism
8.
J Opt Soc Am A Opt Image Sci Vis ; 41(5): 844-851, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38856571

ABSTRACT

Fluorescence molecular tomography (FMT) is a non-invasive, radiation-free, and highly sensitive optical molecular imaging technique for early tumor detection. However, inadequate measurement information along with significant scattering of near-infrared light within the tissue leads to high ill-posedness in the inverse problem of FMT. To improve the quality and efficiency of FMT reconstruction, we build a reconstruction model based on log-sum regularization and introduce an online maximum a posteriori estimation (OPE) algorithm to solve the non-convex optimization problem. The OPE algorithm approximates a stationary point by evaluating the gradient of the objective function at each iteration, and its notable strength lies in the remarkable speed of convergence. The results of simulations and experiments demonstrate that the OPE algorithm ensures good reconstruction quality and exhibits outstanding performance in terms of reconstruction efficiency.

9.
Int Endod J ; 57(6): 682-699, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403990

ABSTRACT

AIM: This study aimed to determine the effects of iRoot BP Plus on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and inflammation-mediated bone resorption in vivo and investigated the underlying molecular mechanisms. METHODOLOGY: CCK-8 was performed to test cell viability in RANKL-induced RAW 264.7 cells and BMDMs in response to iRoot BP Plus. The effect of iRoot BP Plus on osteoclastogenesis was determined using TRAP staining and phalloidin staining, respectively. Pit formation assay was conducted to measure osteoclast resorptive capacity. Western blot and qPCR were performed to examine osteoclast-related proteins and gene expression, respectively. Western blot was also used to investigate the signalling pathways involved. For in vivo experiments, an LPS-induced mouse calvarial bone resorption model was established to analyse the effect of iRoot BP Plus on bone resorption (n = 6 per group). At 7 days, mouse calvaria were collected and prepared for histological analysis. RESULTS: We identified that iRoot BP Plus extracts significantly attenuated RANKL-induced osteoclastogenesis, reduced sealing zone formation, restrained osteolytic capacity and decreased osteoclast-specific gene expression (p < .01). Mechanistically, iRoot BP Plus extracts reduced TRAF6 via proteasomal degradation, then suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), blocked the nuclear translocation of c-Fos and diminished nuclear factor-κB (NF-κB) p65 and NFATc1 accumulation. Consistent with the in vitro results, iRoot BP Plus extracts attenuated osteoclast activity thus protecting against inflammatory bone resorption in vivo (p < .05), which was accompanied by a suppression of TRAF6, c-Fos, NFATc1 and cathepsin K expression. CONCLUSION: These findings provide valuable insights into the signalling mechanisms underlying nanoparticulate bioceramic putty-mediated bone homeostasis.


Subject(s)
Bone Resorption , Osteoclasts , Osteogenesis , RANK Ligand , Signal Transduction , TNF Receptor-Associated Factor 6 , Animals , Mice , TNF Receptor-Associated Factor 6/metabolism , Signal Transduction/drug effects , Bone Resorption/metabolism , RAW 264.7 Cells , Osteogenesis/drug effects , Osteoclasts/drug effects , RANK Ligand/metabolism , Nanoparticles , Ceramics/pharmacology , Inflammation/metabolism , Cell Survival/drug effects
10.
Ecotoxicol Environ Saf ; 274: 116231, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503102

ABSTRACT

Deposition of potentially toxic elements (PTEs) in soils due to different types of mining activities has been an increasingly important concern worldwide. Quantitative differences of soil PTEs contamination and related health risk among typical mines remain unclear. Herein, data from 110 coal mines and 168 metal mines across China were analyzed based on 265 published literatures to evaluate pollution characteristics, spatial distribution, and probabilistic health risks of soil PTEs. The results showed that PTE levels in soil from both mine types significantly exceeded background values. The geoaccumulation index (Igeo) revealed metal-mine soil pollution levels exceeded those of coal mines, with average Igeo values for Cd, Hg, As, Pb, Cu, and Zn being 3.02-15.60 times higher. Spearman correlation and redundancy analysis identified natural and anthropogenic factors affecting soil PTE contamination in both mine types. Mining activities posed a significant carcinogenic risk, with metal-mine soils showing a total carcinogenic risk an order of magnitude higher than in coal-mine soils. This study provides policymakers a quantitative foundation for developing differentiated strategies for sustainable remediation and risk-based management of PTEs in typical mining soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Coal/analysis , Environmental Monitoring/methods , Environmental Pollution/analysis , Soil , Risk Assessment/methods , China , Soil Pollutants/analysis , Cadmium/analysis
11.
BMC Med Educ ; 24(1): 232, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438890

ABSTRACT

BACKGROUND: Early childhood caries (ECC) causes severe, widespread oral health issues in children. Dental undergraduates and residents are expected to have a solid understanding of ECC for children's oral health promotion. This study aimed to evaluate the knowledge, attitude, and clinical practice on ECC among dental undergraduates and residents in China. METHODS: A 23-item electronic questionnaire was distributed to 598 dental undergraduates (4th- and 5th-year undergraduates) and residents (1st-, 2nd-, and 3rd-year residents) at the School of Stomatology, Wuhan University, China (in April-May 2023). SPSS Statistics was used to analyze the data using the Chi-square test at a significance level of 0.05. RESULTS: A total of 422 questionnaires were completed by participants (recovery rate: 70.6%) from various academic levels. Around 77.3% of participants had heard of ECC (mainly from textbooks), and only 27.5% considered themselves familiar with it. Residents (79.8%) had higher risk awareness of ECC on children's overall health than undergraduates (58.3%) (p < 0.05), but only 54.0% of participants correctly defined ECC. Most participants had a positive understanding of ECC's pathogenic factors and preventive measures, including feeding patterns (71.6%), fluoride application (93.4%), and teeth cleaning (93.1%). Furthermore, only 50.2% of participants encountered ECC cases in clinic. CONCLUSIONS: Despite having a suboptimal level of ECC-related knowledge and practice, dental undergraduates and residents in China demonstrated a more positive attitude towards its etiology-based prevention. Strengthening ECC education, guidance, and practice may enable them to gain a better understanding of ECC learning, which would benefit children's oral health.


Subject(s)
Dental Caries Susceptibility , Dental Caries , Child, Preschool , Child , Humans , Health Knowledge, Attitudes, Practice , Students , Dental Caries/epidemiology , Dental Caries/prevention & control , China/epidemiology
12.
Molecules ; 29(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398511

ABSTRACT

Trimethylamine N-oxide (TMAO) has attracted interest because of its association with cardiovascular disease and diabetes, and evidence for the beneficial effects of TMAO is accumulating. This study investigates the role of TMAO in improving exercise performance and elucidates the underlying molecular mechanisms. Using C2C12 cells, we established an oxidative stress model and administered TMAO treatment. Our results indicate that TMAO significantly protects myoblasts from oxidative stress-induced damage by increasing the expression of Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase (NQO1), and catalase (CAT). In particular, suppression of Nrf2 resulted in a loss of the protective effects of TMAO and a significant decrease in the expression levels of Nrf2, HO-1, and NQO1. In addition, we evaluated the effects of TMAO in an exhaustive swimming test in mice. TMAO treatment significantly prolonged swimming endurance, increased glutathione and taurine levels, enhanced glutathione peroxidase activity, and increased the expression of Nrf2 and its downstream antioxidant genes, including HO-1, NQO1, and CAT, in skeletal muscle. These findings underscore the potential of TMAO to counteract exercise-induced oxidative stress. This research provides new insights into the ability of TMAO to alleviate exercise-induced oxidative stress via the Nrf2 signaling pathway, providing a valuable framework for the development of sports nutrition supplements aimed at mitigating oxidative stress.


Subject(s)
Methylamines , NF-E2-Related Factor 2 , Oxidative Stress , Mice , Animals , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Signal Transduction , Heme Oxygenase-1/metabolism
13.
Molecules ; 29(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338456

ABSTRACT

Diabetic muscle atrophy is an inflammation-related complication of type-2 diabetes mellitus (T2DM). Even though regular exercise prevents further deterioration of atrophic status, there is no effective mediator available for treatment and the underlying cellular mechanisms are less explored. In this study, we investigated the therapeutic potential of MCC950, a specific, small-molecule inhibitor of NLRP3, to treat pyroptosis and diabetic muscle atrophy in mice. Furthermore, we used MCC950 to intervene in the protective effects of aerobic exercise against muscle atrophy in diabetic mice. Blood and gastrocnemius muscle (GAS) samples were collected after 12 weeks of intervention and the atrophic state was assessed. We initially corroborated a diabetic muscle atrophy phenotype in db/db mice (D) by comparison with control m/m mice (W) by examining parameters such as fasting blood glucose (D vs. W: 24.47 ± 0.45 mmol L-1 vs. 4.26 ± 0.6 mmol L-1, p < 0.05), grip strength (D vs. W: 166.87 ± 15.19 g vs. 191.76 ± 14.13 g, p < 0.05), exercise time (D vs. W: 1082.38 ± 104.67 s vs. 1716 ± 168.55 s, p < 0.05) and exercise speed to exhaustion (D vs. W: 24.25 ± 2.12 m min-1 vs. 34.75 ± 2.66 m min-1, p < 0.05), GAS wet weight (D vs. W: 0.07 ± 0.01 g vs. 0.13 ± 0.01 g, p < 0.05), the ratio of GAS wet weight to body weight (D vs. W: 0.18 ± 0.01% vs. 0.54 ± 0.02%, p < 0.05), and muscle fiber cross-sectional area (FCSA) (D vs. W: 1875 ± 368.19 µm2 vs. 2747.83 ± 406.44 µm2, p < 0.05). We found that both MCC950 (10 mg kg-1) treatment and exercise improved the atrophic parameters that had deteriorated in the db/db mice, inhibited serum inflammatory markers and significantly attenuated pyroptosis in atrophic GAS. In addition, a combined MCC950 treatment with exercise (DEI) exhibited a further improvement in glucose uptake capacity and muscle performance. This combined treatment also improved the FCSA of GAS muscle indicated by Laminin immunofluorescence compared to the group with the inhibitor treatment alone (DI) (DEI vs. DI: 2597 ± 310.97 vs. 1974.67 ± 326.15 µm2, p < 0.05) or exercise only (DE) (DEI vs. DE: 2597 ± 310.97 vs. 2006.33 ± 263.468 µm2, p < 0.05). Intriguingly, the combination of MCC950 treatment and exercise significantly reduced NLRP3-mediated inflammatory factors such as cleaved-Caspase-1, GSDMD-N and prevented apoptosis and pyroptosis in atrophic GAS. These findings for the first time demonstrate that targeting NLRP3-mediated pyroptosis with MCC950 improves diabetic muscle homeostasis and muscle function. We also report that inhibiting pyroptosis by MCC950 can enhance the beneficial effects of aerobic exercise on diabetic muscle atrophy. Since T2DM and muscle atrophy are age-related diseases, the young mice used in the current study do not seem to fully reflect the characteristics of diabetic muscle atrophy. Considering the fragile nature of db/db mice and for the complete implementation of the exercise intervention, we used relatively young db/db mice and the atrophic state in the mice was thoroughly confirmed. Taken together, the current study comprehensively investigated the therapeutic effect of NLRP3-mediated pyroptosis inhibited by MCC950 on diabetic muscle mass, strength and exercise performance, as well as the synergistic effects of MCC950 and exercise intervention, therefore providing a novel strategy for the treatment of the disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/therapy , Pyroptosis , Sulfonamides/pharmacology , Mice, Inbred Strains , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Exercise , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology
14.
J Cell Mol Med ; 27(11): 1523-1538, 2023 06.
Article in English | MEDLINE | ID: mdl-37132043

ABSTRACT

Liver cancer is one of the most common solid tumours, and ranks as the third leading cause of cancer-associated mortality around the world. This study has linked RNF12 to the pathogenesis of liver cancer. Based on the analysis of patient samples and database data, high RNF12 expression was found in liver cancer, in correlation with worse clinicopathological features and a poor prognosis. Meantime, RNF12 could promote the progression of liver cancer in vitro and in vivo. Mechanistically, RNF12 could interact with EGFR and decrease the internalization of EGFR to activate EGF/EGFR signalling. In addition, PI3K-AKT signalling takes part in the regulation of liver cancer cell proliferation and migration of RNF12. And AKT inhibitor MK2206 could reverse RNF12-mediated cellular proliferation and migration in liver cancer. The possibility of the physical interaction between RNF12 and EGFR might lay a foundation to develop intervention strategies for liver cancer prevention and therapy.


Subject(s)
Liver Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Liver Neoplasms/genetics , Cell Line, Tumor
15.
Funct Integr Genomics ; 24(1): 2, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066213

ABSTRACT

Camellia perpetua has the excellent characteristic of flowering multiple times throughout the year, which is of great importance to solve the problem of "short flowering period" and "low fresh flower yield" in the yellow Camellia industry at present. Observations of flowering phenology have demonstrated that most floral buds of C. perpetua were formed by the differentiation of axillary buds in the scales at the base of the terminal buds of annual branches. However, the molecular mechanism of flowering in C. perpetua is still unclear. In this study, we conducted a comparative transcriptomic study of the terminal buds and their basal flower buds in March (spring) and September (autumn) using RNA-seq and found that a total of 11,067 genes were significantly differentially expressed in these two periods. We identified 27 genes related to gibberellin acid (GA) synthesis, catabolism, and signal transduction during floral bud differentiation. However, treatment of the terminal buds and axillary buds of C. perpetua on annual branch with GA3 did not induce floral buds at the reproductive growth season (in August) but promoted shoot sprouting. Moreover, 203 flowering genes were identified from the C. perpetua transcriptome library through homology alignment, including flowering integrators LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO), as well as MADS-box, SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box), and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) genes, which were specifically upregulated in floral buds and were likely involved in flowering in C. perpetua. The floral inhibitor CperTFL1b was identified and cloned from C. perpetua, and its expression level was specifically regulated in terminal buds in autumn. Ectopic overexpression of CperTFL1b delayed flowering time and produced abnormal inflorescence and floral organs in Arabidopsis, suggesting that CperTFL1b inhibits flowering. In conclusion, this study deepens our understanding of the molecular mechanism of blooms throughout the year in C. perpetua and provides a helpful reference for cultivating new varieties of yellow Camellia with improved flowering traits.


Subject(s)
Camellia , Transcriptome , Camellia/genetics , Gene Expression Profiling , RNA-Seq , Flowers , Gene Expression Regulation, Plant
16.
Ann Surg Oncol ; 30(1): 278-284, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35980549

ABSTRACT

INTRODUCTION: Tumor agnostic circulating tumor DNA (ctDNA) is routinely used to guide treatment decisions in gastrointestinal (GI) cancers, especially metastatic cancers. The amount of ctDNA detected in plasma is affected by stage, tumor burden, and tumor vascularization. We hypothesized that peritoneal carcinomatosis (PC) is associated with lower ctDNA levels than other metastatic sites in GI cancers due to the plasma-peritoneal barrier. METHODS: We conducted a retrospective analysis of patients with stage II-IV GI cancers treated at our institution between 2015 and 2020 with available panel-based ctDNA results (Guardant 360TM). ctDNA analysis was performed on early and pretreatment samples. We compared the reported maximum variant allele frequency (mVAF) of somatic mutations across metastatic sites. RESULTS: Of the 279 patients with GI cancers (colorectal, upper GI, pancreaticobiliary), 212 had stage IV disease (PC: n = 61; visceral metastases: n = 138; other metastases: n = 13). Mean mVAF increased with increasing stages of disease (stage II: 3.6 ± 7; stage III: 6.4 ± 10; stage IV: 28.0 ± 51; p < 0.01). Among patients with stage IV disease, PC was associated with lower ctDNA levels independent of primary tumor site (PC only: 12.1%; PC+ visceral metastases: 26.8%; and visceral metastases only: 35.0%; p < 0.01). In a subset of patients (n = 27, matched pair analysis of genomic alterations (GAs) showed fewer GAs were detected in plasma compared with tissue. CONCLUSIONS: PC of GI origin is associated with significantly lower ctDNA levels compared with visceral metastasis. Caution is warranted when interpreting ctDNA results from patients with PC due to lower sensitivity for detecting actionable mutations.


Subject(s)
Circulating Tumor DNA , Gastrointestinal Neoplasms , Humans , Circulating Tumor DNA/genetics , Genomics , Retrospective Studies , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/genetics
17.
Ann Surg Oncol ; 30(6): 3833-3844, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36864326

ABSTRACT

BACKGROUND: Liquid biopsies have become an integral part of cancer management as minimally invasive options to detect molecular and genetic changes. However, current options show poor sensitivity in peritoneal carcinomatosis (PC). Novel exosome-based liquid biopsies may provide critical information on these challenging tumors. In this initial feasibility analysis, we identified an exosome gene signature of 445 genes (ExoSig445) from colon cancer patients, including those with PC, that is distinct from healthy controls. METHODS: Plasma exosomes from 42 patients with metastatic and non-metastatic colon cancer and 10 healthy controls were isolated and verified. RNAseq analysis of exosomal RNA was performed and differentially expressed genes (DEGs) were identified by the DESeq2 algorithm. The ability of RNA transcripts to discriminate control and cancer cases was assessed by principal component analysis (PCA) and Bayesian compound covariate predictor classification. An exosomal gene signature was compared with tumor expression profiles of The Cancer Genome Atlas. RESULTS: Unsupervised PCA using exosomal genes with greatest expression variance showed stark separation between controls and patient samples. Using separate training and test sets, gene classifiers were constructed capable of discriminating control and patient samples with 100% accuracy. Using a stringent statistical threshold, 445 DEGs fully delineated control from cancer samples. Furthermore, 58 of these exosomal DEGs were found to be overexpressed in colon tumors. CONCLUSIONS: Plasma exosomal RNAs can robustly discriminate colon cancer patients, including patients with PC, from healthy controls. ExoSig445 can potentially be developed as a highly sensitive liquid biopsy test in colon cancer.


Subject(s)
Colonic Neoplasms , Exosomes , Humans , Biomarkers, Tumor/metabolism , Exosomes/genetics , Exosomes/metabolism , Bayes Theorem , Colonic Neoplasms/pathology , RNA/metabolism
18.
Opt Express ; 31(15): 23768-23789, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475220

ABSTRACT

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

19.
Eur J Clin Invest ; 53(12): e14067, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37515404

ABSTRACT

BACKGROUND: Observational studies have suggested an association between lipid-lowering drugs and inflammatory bowel disease (IBD) risk. This study aimed to assess the causal influence of lipid-lowering agents on IBD risk using Mendelian randomization analysis. METHOD: In a population of 173,082 individuals of European ancestry, 55 single-nucleotide polymorphisms were identified as instrumental variables for 6 lipid-lowering drug targets (HMGCR, NPC1LC, PCSK9, LDLR, CETP and APOB). Summary statistics for the genome-wide association study of IBD, ulcerative colitis (UC) and Crohn's disease (CD) were obtained from the FinnGen consortium, Program in Complex Trait Genomics and UK Biobank. Inverse-variance weighted was employed as the primary MR method, and odds ratios (ORs) with 95% confidence intervals were reported as the results. Sensitivity analyses using conventional MR methods were conducted to assess result robustness. RESULTS: Gene-proxied inhibition of Niemann-Pick C1-like 1 (NPC1L1) was associated with an increased IBD risk (OR [95% CI]: 2.31 [1.38, 3.85]; p = .001), particularly in UC (OR [95% CI]: 2.40 [1.21, 4.74], p = .012), but not in CD. This finding was replicated in the validation cohort. Additionally, gene-proxied inhibition of low-density lipoprotein receptor was associated with reduced IBD (OR [95% CI]: .72 [.60, .87], p < .001) and UC risk (OR [95% CI]: .74 [.59, .92], p = .006), although this result was not replicated in the validation cohort. Other drug targets did not show significant associations with IBD, UC or CD risk. CONCLUSION: Inhibition of the lipid-lowering drug-target NPC1L1 leads to an increased IBD risk, mainly in the UC population.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Proprotein Convertase 9 , Genome-Wide Association Study , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/epidemiology , Inflammatory Bowel Diseases/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/epidemiology , Colitis, Ulcerative/genetics , Crohn Disease/drug therapy , Crohn Disease/epidemiology , Crohn Disease/genetics , Hypolipidemic Agents , Lipids
20.
J Biomed Sci ; 30(1): 17, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36872348

ABSTRACT

E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.


Subject(s)
Neoplasms , Female , Humans , Pregnancy , Morphogenesis/genetics , Neoplasms/genetics , Oxidative Stress , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL