Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Lipids Health Dis ; 23(1): 63, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419057

ABSTRACT

BACKGROUND AND OBJECTIVE: Dyslipidemia is significantly more common in those with concurrent chronic kidney disease (CKD) and chronic heart failure (CHF). Sacubitril/valsartan has showcased its influence on both cardiac and renal functions, extending its influence to the modulation of lipid metabolism pathways. This study aimed to examine how sacubitril/valsartan affects lipid metabolism within the context of CKD and CHF. METHODS: This study adopted a retrospective design, focusing on a single center and involving participants who were subjected to treatment with sacubitril/valsartan and valsartan. The investigation assessed the treatment duration, with a particular emphasis on recording blood lipid indicators, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A (ApoA), and apolipoprotein B (ApoB). Furthermore, cardiac and renal functions, blood pressure, potassium levels, and other factors influencing the blood lipids were analyzed in both groups at identical time points. RESULTS: After 16 weeks of observation, the sacubitril/valsartan group exhibited lower TG levels compared to the valsartan group. Noteworthy was the fact that individuals undergoing sacubitril/valsartan treatment experienced an average reduction of 0.84 mmol/L in TG levels, in stark contrast to the valsartan group, which registered a decline of 0.27 mmol/L (P < 0.001). The sacubitril/valsartan group exhibited elevated levels of HDL-C and ApoA in comparison to the valsartan group (PHDL-C = 0.023, PApoA = 0.030). While TC, LDL-C, and ApoB decreased compared to baseline, the differences between groups were not statistical significance. Regarding cardiac indicators, there was an observed enhancement in the left ventricular ejection fraction (LVEF) within the sacubitril/valsartan group when compared to the baseline, and it was noticeably higher than that of the valsartan group. Spearman correlation analysis and multiple linear regression analysis revealed that medication, body mass index(BMI), and hemoglobin A1c (HbA1c) had a direct influencing effect on TG levels. CONCLUSION: Sacubitril/valsartan demonstrated improvements in lipid metabolism and cardiac indicators in patients with CKD and CHF. Specifically, it presented promising benefits in reducing TG levels. In addition, both BMI and HbA1c emerged as influential factors contributing to alterations in TG levels, independent of the administration of sacubitril/valsartan.


Subject(s)
Aminobutyrates , Heart Failure , Renal Insufficiency, Chronic , Humans , Retrospective Studies , Stroke Volume/physiology , Cholesterol, LDL , Glycated Hemoglobin , Lipid Metabolism , Tetrazoles/therapeutic use , Tetrazoles/pharmacology , Ventricular Function, Left/physiology , Valsartan/therapeutic use , Valsartan/pharmacology , Heart Failure/complications , Heart Failure/drug therapy , Biphenyl Compounds , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Drug Combinations , Apolipoproteins A/pharmacology , Apolipoproteins B , Apolipoproteins
2.
Steroids ; 207: 109434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710261

ABSTRACT

Steroid myopathy is a non-inflammatory toxic myopathy that primarily affects the proximal muscles of the lower limbs. Due to its non-specific symptoms, it is often overshadowed by patients' underlying conditions. Prolonged or high-dosage use of glucocorticoids leads to a gradual decline in muscle mass. There are no tools available to identify the course of steroid myopathy before the patient displays substantial clinical symptoms. In this study, we investigated individuals with nephrotic syndrome receiving prednisone who underwent muscle ultrasound to obtain cross-sectional and longitudinal pictures of three major proximal muscles in the lower limbs: the vastus lateralis, tibialis anterior, and medial gastrocnemius muscles. Our findings revealed that grip strength was impaired in the prednisolone group, creatine kinase levels were reduced within the normal range; echo intensity of the vastus lateralis and medial gastrocnemius muscles was enhanced, the pennation angle was reduced, and the tibialis anterior muscle exhibited increased echo intensity and decreased thickness. The total dose of prednisone and the total duration of treatment impacted the degree of muscle damage. Our findings indicate that muscle ultrasound effectively monitors muscle structure changes in steroid myopathy. Combining clinical symptoms, serum creatine kinase levels, and grip strength improves the accuracy of muscle injury evaluation.


Subject(s)
Muscle, Skeletal , Nephrotic Syndrome , Prednisone , Ultrasonography , Humans , Male , Prednisone/adverse effects , Prednisone/administration & dosage , Female , Adult , Middle Aged , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/diagnostic imaging , Nephrotic Syndrome/chemically induced , Muscle, Skeletal/drug effects , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/chemically induced , Muscular Diseases/diagnostic imaging , Muscular Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL