Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279645

ABSTRACT

The process of drug development is expensive and time-consuming. In contrast, drug repurposing can be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has been a significant expansion of large biobanks that link genomic data to electronic health record data, public availability of various databases containing biological and clinical information and rapid development of novel methodologies and algorithms in integrating different sources of data. This review aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies up until 1 May 2023, with a total of 102 studies finally included after two-step parallel screening. We summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-omic-based and network-based studies and illustrated each strategy with examples, as well as the data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for approved drugs in a more efficient and targeted manner. However, technical challenges when integrating different types of data and biased or incomplete understanding of drug interactions are important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic applications. This review offers an overview of drug repurposing methodologies, providing valuable insights and guiding future directions for advancing drug repurposing studies.


Subject(s)
Drug Repositioning , Genomics , Humans , Algorithms , Drug Development , Drug Discovery/methods , Drug Repositioning/methods
2.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920346

ABSTRACT

Estimating transmission rates is a challenging yet essential aspect of comprehending and controlling the spread of infectious diseases. Various methods exist for estimating transmission rates, each with distinct assumptions, data needs, and constraints. This study introduces a novel phylogenetic approach called transRate, which integrates genetic information with traditional epidemiological approaches to estimate inter-population transmission rates. The phylogenetic method is statistically consistent as the sample size (i.e. the number of pathogen genomes) approaches infinity under the multi-population susceptible-infected-recovered model. Simulation analyses indicate that transRate can accurately estimate the transmission rate with a sample size of 200 ~ 400 pathogen genomes. Using transRate, we analyzed 40,028 high-quality sequences of SARS-CoV-2 in human hosts during the early pandemic. Our analysis uncovered significant transmission between populations even before widespread travel restrictions were implemented. The development of transRate provides valuable insights for scientists and public health officials to enhance their understanding of the pandemic's progression and aiding in preparedness for future viral outbreaks. As public databases for genomic sequences continue to expand, transRate is increasingly vital for tracking and mitigating the spread of infectious diseases.


Subject(s)
COVID-19 , Phylogeny , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/epidemiology , COVID-19/virology , Pandemics , Communicable Diseases/transmission , Communicable Diseases/epidemiology , Genome, Viral
3.
EMBO Rep ; 24(6): e56390, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37154299

ABSTRACT

Excessive gluconeogenesis can lead to hyperglycemia and diabetes through as yet incompletely understood mechanisms. Herein, we show that hepatic ZBTB22 expression is increased in both diabetic clinical samples and mice, being affected by nutritional status and hormones. Hepatic ZBTB22 overexpression increases the expression of gluconeogenic and lipogenic genes, heightening glucose output and lipids accumulation in mouse primary hepatocytes (MPHs), while ZBTB22 knockdown elicits opposite effects. Hepatic ZBTB22 overexpression induces glucose intolerance and insulin resistance, accompanied by moderate hepatosteatosis, while ZBTB22-deficient mice display improved energy expenditure, glucose tolerance, and insulin sensitivity, and reduced hepatic steatosis. Moreover, hepatic ZBTB22 knockout beneficially regulates gluconeogenic and lipogenic genes, thereby alleviating glucose intolerance, insulin resistance, and liver steatosis in db/db mice. ZBTB22 directly binds to the promoter region of PCK1 to enhance its expression and increase gluconeogenesis. PCK1 silencing markedly abolishes the effects of ZBTB22 overexpression on glucose and lipid metabolism in both MPHs and mice, along with the corresponding changes in gene expression. In conclusion, targeting hepatic ZBTB22/PEPCK1 provides a potential therapeutic approach for diabetes.


Subject(s)
Fatty Liver , Glucose Intolerance , Hyperglycemia , Insulin Resistance , Mice , Animals , Gluconeogenesis/genetics , Insulin Resistance/genetics , Liver/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Glucose/metabolism , Fatty Liver/metabolism , Mice, Inbred C57BL , Hepatocytes/metabolism
4.
BMC Neurol ; 24(1): 257, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048962

ABSTRACT

BACKGROUND: Herpes zoster is an infectious skin disease caused by the reactivation of the varicella zoster virus (VZV), which has been latent in the posterior root ganglia of the spinal cord or cranial ganglia for an extended period. Neurological complications caused by herpes zoster include aseptic meningitis, white matter disease, peripheral motor neuropathy, and Guillain-Barré syndrome. However, reduced unilateral sweating caused by the VZV is very rare. CASE PRESENTATION: This article reports the case of a 34-year-old woman who was admitted to our hospital with sore throat, dizziness, and reduced sweating on the left side of her body. Physical examination found herpes lesions on the left upper lip and left external ear canal (scabbed) and reduced sweating on the left side of the body. Head magnetic resonance imaging (MRI) with contrast showed no abnormalities. After a lumbar puncture, the patient was diagnosed with viral meningitis by VZV infection. The electromyographic skin sympathetic reflex indicated damage to the left sympathetic nerve. CONCLUSIONS: Secondary unilateral sweating reduction is a rare neurological complication of herpes zoster, caused by damage to the autonomic nervous system. Literature review and comprehensive examination indicated that the reduced unilateral sweating was due to the activation of latent herpes zoster virus in the autonomic ganglia which has damaged the autonomic nervous system. For patients who exhibit acute hemibody sweat reduction, doctors should consider the possibility of secondary autonomic nervous system damage caused by herpes zoster.


Subject(s)
Varicella Zoster Virus Infection , Humans , Female , Adult , Varicella Zoster Virus Infection/complications , Sweating , Herpes Zoster/complications
5.
Acta Pharmacol Sin ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987388

ABSTRACT

Liver X receptors (LXRs) which link lipid metabolism and inflammation, were overexpressed in experimental rheumatoid arthritis (RA) rats as observed in our previous studies, while suppression of LXRα by silybin ameliorates arthritis and abnormal lipid metabolism. However, the role of LXRs in RA remains undefined. In this study, we investigated the inhibition role of LXRs in the polarization and activation of M1 macrophage by using a special LXRs inverse agonist SR9243, which led to ameliorating the progression of adjuvant-induced arthritis (AIA) in rats. Mechanistically, SR9243 disrupted the LPS/IFN-γ-induced Warburg effect in M1 macrophages, while glycolysis inhibitor 2-DG attenuated the inhibition effect of SR9243 on M1 polarization and the cytokines expression of M1 macrophages including iNOS, TNF-α, and IL-6 in vitro. Furthermore, SR9243 downregulated key glycolytic enzymes, including LDH-A, HK2, G6PD, GLUT1, and HIF-1α in M1 macrophages, which is mediated by increased phosphorylation of AMPK (Thr172) and reduced downstream phosphorylation of mTOR (Ser2448). Importantly, gene silencing of LXRs compromises the inhibition effect of SR9243 on M1 macrophage polarization and activation. Collectively, for the first time, our findings suggest that the LXR inverse agonist SR9243 mitigates adjuvant-induced rheumatoid arthritis and protects against bone erosion by inhibiting M1 macrophage polarization and activation through modulation of glycolytic metabolism via the AMPK/mTOR/HIF-1α pathway.

6.
Cell Mol Biol Lett ; 29(1): 77, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769475

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS: ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS: LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS: LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.


Subject(s)
Chemokine CCL2 , Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Tumor Microenvironment , Tumor-Associated Macrophages , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Cell Line, Tumor , Tumor Microenvironment/genetics , Tumor-Associated Macrophages/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Animals , Mice , Female , Cell Proliferation/genetics
7.
Ecotoxicol Environ Saf ; 279: 116466, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38759533

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and dioxins are potential causes of multiple diseases by activating the aryl hydrocarbon receptor (AhR) pathway. Health risk assessment of chemicals primarily relies on the relative potency factor (RPF), although its accuracy may be limited when solely using EC50 values. The induction of cytochrome P4501A1 (CYP1A1) serves as a biomarker for AhR activation and is an integrator of dioxin-like toxicity. Here, we present a method for evaluating the risks associated with AhR activation using mathematical models of dose-CYP1A1 induction. The dose-effect curves for certain PAHs and dioxins, including Ant, BghiP, 1,2,3,4,7,8-HxCDD, and others, exhibited a non-classical S-shaped form. The toxic equivalent factor (TEF) profiles revealed a broad range of toxic equivalent factor values. The TEFs for PAHs ranged from approximately 0.01 to 6, with higher values being observed when the concentration was less than 10-10 M, with the exceptions of Ace, Phe, and BghiP. Most congeners of dioxins got the lowest TEF value at around 10-10 M, ranging from 0.04 to 1.00. The binding affinity of AhR to ligands did not display a strong correlation with the EC50 of CYP1A1 expression, suggesting that the AhR-mediated effects of PAHs and dioxins are not fixed but instead fluctuate with the dose. Air samples acquired from a parking area were used to compare the proficiency of RPF and our current approach. In the current method, naphthalene and chrysene were the primary contributors of PAHs to AhR-mediated risks in parking lots air samples, respectively. However, the contributions of naphthalene and chrysene could be disregarded in the RPF approach.


Subject(s)
Biomarkers , Cytochrome P-450 CYP1A1 , Dioxins , Inhalation Exposure , Polycyclic Aromatic Hydrocarbons , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Cytochrome P-450 CYP1A1/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Dioxins/toxicity , Risk Assessment , Humans , Dose-Response Relationship, Drug
8.
Exp Aging Res ; 50(2): 155-170, 2024.
Article in English | MEDLINE | ID: mdl-38192192

ABSTRACT

OBJECTIVE: To investigate whether central sensitization (CS) in elderly patients was a predictive risk factor for postoperative neurocognitive dysfunction (PNCD). METHODS: One hundred and thirty-three aged patients undergoing total knee arthroplasty (TKA) who received femoral nerve block and general anesthesia were recruited in this research and prospectively assigned into two groups according to the Central Sensitization Inventory (CSI) score: group C (n = 106, CSI score less than 40) and group CS (n = 27, CSI score higher than 40). Scores of Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Confusion Assessment Method (CAM), Numerical Rating Scale (NRS) and Quality of recovery-40 (QoR-40) questionnaires were assessed. Basic information and clinical records of all participants were also collected. RESULTS: PNCD occurred in 24 (22.6%) of patients in group C and 16 (59.3%) in group CS (p < .05). Multivariate logistic regression analysis revealed that patients with CSI score ≥40 before surgery exhibited higher risk of PNCD after adjustment for other risk factors (p < .05). Compared to group C, the pre- and post-operative NRS scores, pain duration, the WOMAC score, and propofol consumptions for anesthesia induction were significantly increased in group CS (p < .05). CONCLUSION: Hospitalized elderly patients with clinical symptoms of CS scores may have increased risk of PNCD following TKA.


Subject(s)
Central Nervous System Sensitization , Propofol , Aged , Humans , Prospective Studies , Aging , Mental Status and Dementia Tests
9.
Clin Oral Investig ; 28(4): 221, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38499908

ABSTRACT

OBJECTIVES: To establish a three-dimensional finite element model of the upper palate, pharyngeal cavity, and levator veli palatini muscle in patients with unilateral complete cleft palate, simulate two surgical procedures that the two-flap method and Furlow reverse double Z method, observe the stress distribution of the upper palate soft tissue and changes in pharyngeal cavity area after different surgical methods, and verify the accuracy of the model by reconstructing and measuring the levator veli palatini muscle. MATERIALS AND METHODS: Mimics, Geomagic, Ansys, and Hypermesh were applied to establish three-dimensional finite element models of the pharyngeal cavity, upper palate, and levator veli palatini muscle in patients with unilateral complete cleft palate. The parameters including length, angle, and cross-sectional area of the levator veli palatini muscle etc. were measured in Mimics, and two surgical procedures that two-flap method and Furlow reverse double Z method were simulated in Ansys, and the area of pharyngeal cavity was measured by hypermesh. RESULTS: A three-dimensional finite element model of the upper palate, pharyngeal cavity, and bilateral levator veli palatini muscle was established in patients with unilateral complete cleft palate ; The concept of horizontal projection characteristics of the palatal dome was applied to the finite element simulation of cleft palate surgery, vividly simulating the displacement and elastic stretching of the two flap method and Furlow reverse double Z method during the surgical process; The areas with the highest stress in the two-flap method and Furlow reverse double Z method both occur in the hard soft palate junction area; In resting state, as measured, the two flap method can narrow the pharyngeal cavity area by 50.9%, while the Furlow reverse double Z method can narrow the pharyngeal cavity area by 65.4%; The measurement results of the levator veli palatini muscle showed no significant difference compared to previous studies, confirming the accuracy of the model. CONCLUSIONS: The finite element method was used to establish a model to simulate the surgical procedure, which is effective and reliable. The area with the highest postoperative stress for both methods is the hard soft palate junction area, and the stress of the Furlow reverse double Z method is lower than that of the two-flap method. The anatomical conditions of pharyngeal cavity of Furlow reverse double Z method are better than that of two-flap method in the resting state. CLINICAL RELEVANCE: This article uses three-dimensional finite element method to simulate the commonly used two-flap method and Furlow reverse double Z method in clinical cleft palate surgery, and analyzes the stress distribution characteristics and changes in pharyngeal cavity area of the two surgical methods, in order to provide a theoretical basis for the surgeon to choose the surgical method and reduce the occurrence of complications.


Subject(s)
Cleft Palate , Velopharyngeal Insufficiency , Humans , Cleft Palate/surgery , Cleft Palate/complications , Finite Element Analysis , Velopharyngeal Insufficiency/complications , Velopharyngeal Insufficiency/surgery , Palatal Muscles/surgery , Palate, Soft/surgery , Palate, Hard
10.
Nano Lett ; 23(21): 9963-9971, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37729438

ABSTRACT

Given the key roles of cancer associated fibroblasts (CAFs) in shaping tumor stroma, this study shows a CAF-associated ITGB1-inactivating peptide-enriched membrane nanodelivery system (designated as PMNPs-D) to simultaneously target CAFs and tumor cells for boosted chemotherapy through promoted drug perfusion. In the structure of PMNPs-D, the PLGA-based inner core is loaded with the chemotherapeutic drug doxorubicin, and the outer surface is cloaked by hybrid biomembranes with the insertion of integrin ß1 (ITGB1) inhibiting peptide (i.e., FNIII14). After prolonged blood circulation and actively targeting in tumor sites, PMNPs-D can respond to CAF-overexpressed fibroblast activation protein-α (FAP-α) to trigger the release of FNIII14, which will bind to ITGB1 and inhibit CAFs' biological function in producing the stromal matrix, thereby loosening the condensed stromal structure and enhancing the permeability of nanotherapeutics in tumors. As a result, this tailor-designed nanosystem shows substantial tumor inhibition and metastasis retardation in aggressive adenoid cystic carcinoma (ACC) tumor-harboring mice.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Animals , Mice , Cancer-Associated Fibroblasts/pathology , Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Membranes , Peptides/metabolism , Tumor Microenvironment , Cell Line, Tumor , Fibroblasts/metabolism
11.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791581

ABSTRACT

Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower.


Subject(s)
Anthocyanins , Arabidopsis , Carthamus tinctorius , Droughts , Flavonols , Gene Expression Regulation, Plant , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Flavonols/metabolism , Anthocyanins/metabolism , Carthamus tinctorius/genetics , Carthamus tinctorius/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Plants, Genetically Modified , Oxidoreductases/metabolism , Oxidoreductases/genetics , Drought Resistance
12.
Molecules ; 29(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276619

ABSTRACT

DAPB, a new molecule including danshensu, borneol, and a mother nucleus of ACEI (Angiotensin-converting enzyme inhibitors), is being developed as an antihypertensive candidate compound. A rapid, accurate, and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established and validated for the determination of DAPB in rat plasma. Chromatographic separation was performed on an Agilent SB-C18 column after protein precipitation by acetonitrile with a mobile phase consisting of acetonitrile and deionized water with 0.02% formic acid and 5 mM NH4F (v/v) at a flow rate of 0.2 mL/min. Quantification was performed using electrospray positive ionization mass spectrometry in the multiple reaction monitoring (MRM) mode. The method was linear over the range of 2-1000 ng/mL. The intra- and inter-day precision was within 12%, with accuracies less than 7%. Stability was within the acceptable limits under various storage and processing conditions. No apparent matrix effect was detected. The validated method was applied to the pre-clinical pharmacokinetic study of DAPB after oral administration of 30 mg/kg and intravenous administration of 6 mg/kg in rats.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Acetonitriles
13.
Int J Cancer ; 153(9): 1602-1611, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37504220

ABSTRACT

Early-onset colorectal cancer (EOCRC) has been increasing worldwide. Potential risk factors may have occurred in childhood or adolescence. We investigated the associations between early-life factors and EOCRC risk, with a particular focus on long-term or recurrent antibiotic use (LRAU) and its interaction with genetic factors. Data on the UK Biobank participants recruited between 2006 and 2010 and followed up to February 2022 were used. We used logistic regression to estimate adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) of the associations between LRAU during early life and EOCRC risk overall and by polygenic risk score (constructed by 127 CRC-related genetic variants) and Fucosyltransferase 2 (FUT2), a gut microbiota regulatory gene. We also assessed the associations for early-onset colorectal adenomas, as precursor lesion of CRC, to examine the effect of LRAU during early-life and genetic factors on colorectal carcinogenesis. A total of 113 256 participants were included in the analysis, with 165 EOCRC cases and 719 EOCRA cases. LRAU was nominally associated with increased risk of early-onset CRC (OR = 1.48, 95% CI = 1.01-2.17, P = .046) and adenomas (OR = 1.40, 95% CI = 1.17-1.68, P < .001). When stratified by genetic polymorphisms of FUT2, LRAU appeared to confer a comparatively greater risk for early-onset adenomas among participants with rs281377 TT genotype (OR = 1.10, 95% CI = 0.79-1.52, P = .587, for CC genotype; OR = 1.75, 95% CI = 1.16-2.64, P = .008, for TT genotype; Pinteraction = .089). Our study suggested that LRAU during early life is associated with increased risk of early-onset CRC and adenomas, and the association for adenomas is predominant among individuals with rs281377 TT/CT genotype. Further studies investigating how LRAU contributes together with genetic factors to modify EOCRC risk, particularly concerning the microbiome-related pathway underlying colorectal carcinogenesis, are warranted.


Subject(s)
Adenoma , Colorectal Neoplasms , Humans , Genotype , Colorectal Neoplasms/genetics , Risk Factors , Adenoma/genetics , Carcinogenesis , Galactoside 2-alpha-L-fucosyltransferase
14.
Cancer ; 129(2): 235-244, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36345617

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is genetically heterogeneous in both pathogenesis and clinical symptoms. Most studies on tumor prognosis have not fully considered the role of tumor-infiltrating immune cells. This study focused on the role of tumor-infiltrating immune cells in the prognosis of DLBCL. METHODS: The GSE10846 data set from the National Center for Biotechnology Information's Gene Expression Omnibus was used as the training set, and the GSE53786 data set was used as the validation set. The proportion of immune cells in each sample was calculated with the CIBERSORT algorithm using R software. After 10 immune cells were screened out (activated memory CD4 positive T cells, follicular helper T cells, regulatory T cells, gamma-delta T cells, activated natural killer cells, M0 macrophages, M2 macrophages, resting dendritic cells, and eosinophils) by univariate Cox analysis, Lasso regression and random forest sampling analyses were performed, the intersecting immune cells were selected for multifactor Cox analysis, and a predictive model was constructed combined with clinical information. Predictive performance was assessed using survival analysis and time-dependent receiver operating characteristic curve analysis. RESULTS: In total, 539 samples were included in this study, and samples with p < .05 were retained using CIBERSORT. Univariate Cox analysis yielded 10 cell types that were associated with overall survival. Two kinds of immune cells were obtained by Lasso regression combined with the random forest method and were used to construct a prognostic model combined with clinical information. The reliability of the model was validated in two data sets. CONCLUSIONS: The immune cell-based prediction model constructed by the authors can effectively predict the prognostic outcome of patients with DLBCL, whereas nomogram plots can help clinicians assess the probability of long-term survival.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Reproducibility of Results , Prognosis , Lymphoma, Large B-Cell, Diffuse/genetics , Nomograms , Algorithms
15.
Br J Cancer ; 129(8): 1306-1313, 2023 10.
Article in English | MEDLINE | ID: mdl-37608097

ABSTRACT

BACKGROUND: Tobacco smoking is suggested as a risk factor for colorectal cancer (CRC), but the complex relationship and the potential pathway are not fully understood. METHODS: We performed two-sample Mendelian randomisation (MR) analyses with genetic instruments for smoking behaviours and related DNA methylation in blood and summary-level GWAS data of colorectal cancer to disentangle the relationship. Colocalization analyses and prospective gene-environment interaction analyses were also conducted as replication. RESULTS: Convincing evidence was identified for the pathogenic effect of smoking initiation on CRC risk and suggestive evidence was observed for the protective effect of smoking cessation in the univariable MR analyses. Multivariable MR analysis revealed that these associations were independent of other smoking phenotypes and alcohol drinking. Genetically predicted methylation at CpG site cg17823346 [ZMIZ1] were identified to decrease CRC risk; while genetically predicted methylation at cg02149899 would increase CRC risk. Colocalization and gene-environment interaction analyses added further evidence to the relationship between epigenetic modification at cg17823346 [ZMIZ1] as well as cg02149899 and CRC risk. DISCUSSION: Our study confirms the significant association between tobacco smoking, DNA methylation and CRC risk and yields a novel insight into the pathogenic effect of tobacco smoking on CRC risk.


Subject(s)
Colorectal Neoplasms , Smoking , Humans , Smoking/adverse effects , DNA Methylation , Prospective Studies , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Tobacco Smoking , Genome-Wide Association Study , Polymorphism, Single Nucleotide
16.
Am J Gastroenterol ; 118(3): 511-522, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36695739

ABSTRACT

INTRODUCTION: The joint associations across genetic risk, modifiable lifestyle factors, and inflammatory bowel disease (IBD) remains unclear. METHODS: Genetic susceptibility to Crohn's disease (CD) and ulcerative colitis (UC) was estimated by polygenic risk scores and further categorized into high, intermediate, and low genetic risk categories. Weighted healthy lifestyle scores were constructed based on 5 common lifestyle factors and categorized into favorable (4 or 5 healthy lifestyle factors), intermediate (3 healthy lifestyle factors), and unfavorable (0-2 healthy lifestyle factors) groups. Cox proportional hazards regression model was used to estimate the hazard ratios (HR) and 95% confidence interval (CI) for their associations. RESULTS: During the 12-year follow-up, 707 cases with CD and 1576 cases with UC were diagnosed in the UK Biobank cohort. Genetic risk and unhealthy lifestyle categories were monotonically associated with CD and UC risk with no multiplicative interaction between them. The HR of CD and UC were 2.24 (95% CI 1.75-2.86) and 2.15 (95% CI 1.82-2.53) for those with a high genetic risk, respectively. The HR of CD and UC for individuals with an unfavorable lifestyle were 1.94 (95% CI 1.61-2.33) and 1.98 (95% CI 1.73-2.27), respectively. The HR of individuals with a high genetic risk but a favorable lifestyle (2.33, 95% CI 1.58-3.44 for CD, and 2.05, 95% CI 1.58-2.66 for UC) were reduced nearly by half, compared with those with a high genetic risk but an unfavorable lifestyle (4.40, 95% CI 2.91-6.66 for CD and 4.44, 95% CI 3.34-5.91 for UC). DISCUSSION: Genetic and lifestyle factors were independently associated with susceptibility to incident CD and UC. Adherence to a favorable lifestyle was associated with a nearly 50% lower risk of CD and UC among participants at a high genetic risk.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Adult , Humans , Prospective Studies , Inflammatory Bowel Diseases/complications , Colitis, Ulcerative/epidemiology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/complications , Crohn Disease/epidemiology , Crohn Disease/genetics , Crohn Disease/complications , Risk Factors , Life Style , Incidence
17.
Clin Exp Immunol ; 213(3): 265-275, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37338154

ABSTRACT

MAS825, a bispecific IL-1ß/IL-18 monoclonal antibody, could improve clinical outcomes in COVID-19 pneumonia by reducing inflammasome-mediated inflammation. Hospitalized non-ventilated patients with COVID-19 pneumonia (n = 138) were randomized (1:1) to receive MAS825 (10 mg/kg single i.v.) or placebo in addition to standard of care (SoC). The primary endpoint was the composite Acute Physiology and Chronic Health Evaluation II (APACHE II) score on Day 15 or on the day of discharge (whichever was earlier) with worst-case imputation for death. Other study endpoints included safety, C-reactive protein (CRP), SARS-CoV-2 presence, and inflammatory markers. On Day 15, the APACHE II score was 14.5 ± 1.87 and 13.5 ± 1.8 in the MAS825 and placebo groups, respectively (P = 0.33). MAS825 + SoC led to 33% relative reduction in intensive care unit (ICU) admissions, ~1 day reduction in ICU stay, reduction in mean duration of oxygen support (13.5 versus 14.3 days), and earlier clearance of virus on Day 15 versus placebo + SoC group. On Day 15, compared with placebo group, patients treated with MAS825 + SoC showed a 51% decrease in CRP levels, 42% lower IL-6 levels, 19% decrease in neutrophil levels, and 16% lower interferon-γ levels, indicative of IL-1ß and IL-18 pathway engagement. MAS825 + SoC did not improve APACHE II score in hospitalized patients with severe COVID-19 pneumonia; however, it inhibited relevant clinical and inflammatory pathway biomarkers and resulted in faster virus clearance versus placebo + SoC. MAS825 used in conjunction with SoC was well tolerated. None of the adverse events (AEs) or serious AEs were treatment-related.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Interleukin-18 , Inflammation , Hospitalization , Treatment Outcome
18.
Pharmacol Res ; 191: 106739, 2023 05.
Article in English | MEDLINE | ID: mdl-36948327

ABSTRACT

Nearly half of all Asian non-small cell lung cancer (NSCLC) patients harbour epidermal growth factor receptor (EGFR) mutations, and first-generation EGFR tyrosine kinase inhibitors (TKIs) are one of the first-line treatments that have improved the outcomes of these patients. Unfortunately, 20% of these patients can not benefit from the treatment. The basis of this primary resistance is poorly understood. Therefore, overcoming EGFR-TKI primary resistance and maintaining the efficacy of TKIs has become a key issue. ß-Elemene, a sesquiterpene compound extracted from Curcuma aromatica Salisb. (wenyujing), has shown potent antitumor effects. In this research, we found that ß-elemene combined with erlotinib enhanced the cytotoxicity of erlotinib to primary EGFR-TKI-resistant NSCLC cells with EGFR mutations and that ferroptosis was involved in the antitumor effect of the combination treatment. We found that lncRNA H19 was significantly downregulated in primary EGFR-TKI-resistant NSCLC cell lines and was upregulated by the combination treatment. Overexpression or knockdown of H19 conferred sensitivity or resistance to erlotinib, respectively, in both in vitro and in vivo studies. The high level of H19 enhanced the cytotoxicity of erlotinib by inducing ferroptosis. In conclusion, our data showed that ß-elemene combined with erlotinib could enhance sensitivity to EGFR-TKIs through induction of ferroptosis via H19 in primary EGFR-TKI-resistant lung cancer, providing a promising strategy to overcome EGFR-TKI resistance in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , RNA, Long Noncoding , Sesquiterpenes , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , RNA, Long Noncoding/genetics , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use
19.
J Neurooncol ; 165(1): 149-160, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37897649

ABSTRACT

PURPOSE: The prognosis of patients with leptomeningeal metastasis (LM) remains poor. Circulating tumour DNA (ctDNA) has been proven to be abundantly present in cerebrospinal fluid (CSF); hence, its clinical implication as a biomarker needs to be further verified. METHODS: We conducted a retrospective study of 35 lung adenocarcinoma (LUAD) patients with LM, and matched CSF and plasma samples were collected from all patients. All paired samples underwent next-generation sequencing (NGS) of 139 lung cancer-associated genes. The clinical characteristics and genetic profiling of LM were analysed in association with survival prognosis. RESULTS: LM showed genetic heterogeneity, in which CSF had a higher detection rate of ctDNA (P = 0.003), a higher median mutation count (P < 0.0001), a higher frequency of driver mutations (P < 0.01), and more copy number variation (CNV) alterations (P < 0.001) than plasma. The mutation frequencies of the EGFR, TP53, CDKN2A, MYC and CDKN2B genes were easier to detect in CSF than in LUAD tissue (P < 0.05), possibly reflecting the underlying mechanism of LM metastasis. CSF ctDNA is helpful for analysing the mechanism of EGFR-TKI resistance. In cohort 1, which comprised patients who received 1/2 EGFR-TKIs before the diagnosis of LM, TP53 and CDKN2A were the most common EGFR-independent resistant mutations. In cohort 2, comprising those who progressed after osimertinib and developed LM, 7 patients (43.75%) had EGFR CNV detected in CSF but not plasma. Furthermore, patient characteristics and various genes were included for interactive survival analysis. Patients with EGFR-mutated LUAD (P = 0.042) had a higher median OS, and CSF ctDNA mutation with TERT (P = 0.013) indicated a lower median OS. Last, we reported an LM case in which CSF ctDNA dynamic changes were well correlated with clinical treatment. CONCLUSIONS: CSF ctDNA could provide a more comprehensive genetic landscape of LM, indicating the potential metastasis-related and EGFR-TKI resistance mechanisms of LM patients. In addition, genotyping of CSF combined with clinical outcomes can predict the prognosis of LUAD patients with LM.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Meningeal Carcinomatosis , Humans , Lung Neoplasms/pathology , Circulating Tumor DNA/genetics , Circulating Tumor DNA/cerebrospinal fluid , Carcinoma, Non-Small-Cell Lung/pathology , Retrospective Studies , DNA Copy Number Variations , Genotype , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Meningeal Carcinomatosis/genetics , Mutation , ErbB Receptors/genetics , Protein Kinase Inhibitors/therapeutic use
20.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 75-79, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37571897

ABSTRACT

Diabetes is caused by peripheral insulin resistance and lack of insulin secretion due to the apoptosis of pancreatic beta cells. Tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine secreted from the tissue on the insulin signaling pathway, can play a role in causing fat resistance to insulin in type 2 diabetes patients. Adiponectin is a specific protein of adipose tissue. It belongs to the collectin family, which is present in human plasma at a high level and can protect against vascular lesions. Considering the importance of epigenetic changes in the development of multifactorial diseases, this study was conducted to investigate the methylation of TNF-α gene promoter in patients with type diabetes with cardiovascular disease and compare it with diabetic people without cardiovascular disease. Also, the serum concentration of adiponectin was investigated in diabetic patients with and without cardiovascular disease. For this purpose, 95 patients with type 2 diabetes referred to Isfahan Endocrine and Metabolism Research Center were divided into two groups: cardiovascular disease and without cardiovascular disease, based on the angiography results. Serum adiponectin level was measured by the RIA method. In addition to adiponectin, indicators such as FBS, cholesterol, triglycerides, and HDL were also measured in these patients. Then, the promoter region of the TNF-α gene was investigated by bisulfite treatment method, nested PCR, and finally, sequence determination. The results showed that the serum level of adiponectin was higher in diabetic patients without cardiovascular disease than in diabetic patients with cardiovascular disease, but this difference was not statistically significant. Also, no change was observed between men and women in TNF-α gene promoter methylation in diabetic and non-diabetic groups. In general, the decrease in adiponectin concentration in diabetic people can be a factor in causing macroangiopathy, so it can be predicted that the production of recombinant adiponectin can be helpful in the treatment and protection of cardiovascular disease in these patients. Also, it seems that the epigenetic changes of cytokines that play a role in causing insulin resistance in type 2 diabetic patients are not noticeable in the peripheral blood sample. In this regard, other tissues should probably be investigated.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Humans , Female , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Insulin Resistance/genetics , Adiponectin/genetics , Cardiovascular Diseases/genetics , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL