Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Plant J ; 115(2): 335-350, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37006186

ABSTRACT

Two parallel pathways compartmentalized in the chloroplast and the endoplasmic reticulum contribute to thylakoid lipid synthesis in plants, but how these two pathways are coordinated during thylakoid biogenesis and remodeling remains unknown. We report here the molecular characterization of a homologous ADIPOSE TRIGLYCERIDE LIPASE-LIKE gene, previously referred to as ATGLL. The ATGLL gene is ubiquitously expressed throughout development and rapidly upregulated in response to a wide range of environmental cues. We show that ATGLL is a chloroplast non-regioselective lipase with a hydrolytic activity preferentially towards 16:0 of diacylglycerol (DAG). Comprehensive lipid profiling and radiotracer labeling studies revealed a negative correlation of ATGLL expression and the relative contribution of the chloroplast lipid pathway to thylakoid lipid biosynthesis. Additionally, we show that genetic manipulation of ATGLL expression resulted in changes in triacylglycerol levels in leaves. We propose that ATGLL, through affecting the level of prokaryotic DAG in the chloroplast, plays important roles in balancing the two glycerolipid pathways and in maintaining lipid homeostasis in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Lipoprotein Lipase/metabolism , Chloroplasts/metabolism , Thylakoids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants/metabolism , Lipids
2.
Inorg Chem ; 62(47): 19358-19365, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37965749

ABSTRACT

Atomically precise metal nanoclusters (NCs) demonstrate emerging potential as a new generation of photosensitizers in photoredox catalysis. However, metal NCs suffer from intrinsic poor instability, which leads to the loss of photosensitization effect and hampers their widespread applications in heterogeneous photocatalysis. Herein, we corroborate the design of a spatially directional charge transfer pathway over transition metal chalcogenide (TMC)-based heterostructures by way of a facile and efficient electrostatic self-assembly approach. Positively charged solid-state nonconjugated insulating polymer of poly(allylamine hydrochloride) (PAH) and negatively charged glutathione (GSH) capped metal NCs [Ag9@(GSH)6] as building blocks were controllably and highly ordered anchored on the TMC substrate. It was unveiled that owing to the appropriate energy level alignment and interface configuration, photogenerated electrons over metal NCs can directionally flow to the TMC substrate with the aid of PAH, which functions as an interfacial charge transfer mediator, and simultaneously holes migrate in the opposite direction, thereby collaboratively contributing to substantially boosted charge separation and prolonged charge lifetime. Benefiting from these merits, the thus self-assembled TMCs/PAH/metal NC heterostructure unfolds conspicuously enhanced photoactivity toward anaerobic selective photocatalytic reduction of nitroaromatics to amino derivatives under visible light irradiation. This work would significantly reinforce our fundamental understanding of the charge transfer characteristic of atomically precise metal NCs and the charge-withdrawing capability of solid insulating polymers for solar energy conversion.

3.
Plant J ; 107(1): 37-53, 2021 07.
Article in English | MEDLINE | ID: mdl-33853198

ABSTRACT

Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.


Subject(s)
Enzymes/metabolism , Membrane Lipids/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Membrane Lipids/chemistry , Membrane Lipids/genetics , Plant Cells , Plant Proteins/metabolism , Triglycerides/metabolism
4.
BMC Plant Biol ; 22(1): 366, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35871642

ABSTRACT

Nitrate is an essential nutrient and an important signaling molecule in plants. However, the molecular mechanisms by which plants perceive nitrate deficiency signaling are still not well understood. Here we report that AtNLP7 protein transport from the nucleus to the cytoplasm in response to nitrate deficiency is dependent on the N-terminal GAF domain. With the deletion of the GAF domain, AtNLP7ΔGAF always remains in the nucleus regardless of nitrate availability. AtNLP7 ΔGAF also shows reduced activation of nitrate-induced genes due to its impaired binding to the nitrate-responsive cis-element (NRE) as well as decreased growth like nlp7-1 mutant. In addition, AtNLP7ΔGAF is unable to mediate the reduction of reactive oxygen species (ROS) accumulation upon nitrate treatment. Our investigation shows that the GAF domain of AtNLP7 plays a critical role in the sensing of nitrate deficiency signal and in the nitrate-triggered ROS signaling process.


Subject(s)
Gene Expression Regulation, Plant , Nitrates , Nitrates/metabolism , Plants/genetics , Reactive Oxygen Species/metabolism , Signal Transduction
5.
Plant Physiol ; 185(1): 94-107, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33631801

ABSTRACT

Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.


Subject(s)
Acclimatization/physiology , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Light , Membrane Lipids/metabolism , Plant Leaves/metabolism , Thylakoids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Genetic Variation , Genotype
6.
Plant Cell Environ ; 45(5): 1520-1536, 2022 05.
Article in English | MEDLINE | ID: mdl-35150141

ABSTRACT

Nitrogen (N) is an essential macronutrient for crop growth and yield. Improving the N use efficiency (NUE) of crops is important to agriculture. However, the molecular mechanisms underlying NUE regulation remain largely elusive. Here we report that the OsNLP3 (NIN-like protein 3) regulates NUE and grain yield in rice under N sufficient conditions. OsNLP3 transcript level is significantly induced by N starvation and its protein nucleocytosolic shuttling is specifically regulated by nitrate. Loss-of-function of OsNLP3 reduces plant growth, grain yield, and NUE under sufficient nitrate conditions, whereas under low nitrate or different ammonium conditions, osnlp3 mutants show no clear difference from the wild type. Importantly, under sufficient N conditions in the field, OsNLP3 overexpression lines display improved grain yield and NUE compared with the wild type. OsNLP3 orchestrates the expression of multiple N uptake and assimilation genes by directly binding to the nitrate-responsive cis-elements in their promoters. Overall, our study demonstrates that OsNLP3, together with OsNLP1 and OsNLP4, plays overlapping and differential roles in N acquisition and NUE, and modulates NUE and the grain yield increase promoted by N fertilizer. Therefore, OsNLP3 is a promising candidate gene for the genetic improvement of grain yield and NUE in rice.


Subject(s)
Oryza , Edible Grain/metabolism , Fertilizers , Nitrates/metabolism , Nitrogen/metabolism , Oryza/genetics , Oryza/metabolism
7.
Plant Cell ; 31(7): 1598-1613, 2019 07.
Article in English | MEDLINE | ID: mdl-31036588

ABSTRACT

Autophagy is a major catabolic pathway whereby cytoplasmic constituents including lipid droplets (LDs), storage compartments for neutral lipids, are delivered to the lysosome or vacuole for degradation. The autophagic degradation of cytosolic LDs, a process termed lipophagy, has been extensively studied in yeast and mammals, but little is known about the role for autophagy in lipid metabolism in plants. Organisms maintain a basal level of autophagy under favorable conditions and upregulate the autophagic activity under stress including starvation. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) basal autophagy contributes to triacylglycerol (TAG) synthesis, whereas inducible autophagy contributes to LD degradation. We found that disruption of basal autophagy impedes organellar membrane lipid turnover and hence fatty acid mobilization from membrane lipids to TAG. We show that lipophagy is induced under starvation as indicated by colocalization of LDs with the autophagic marker and the presence of LDs in vacuoles. We additionally show that lipophagy occurs in a process morphologically resembling microlipophagy and requires the core components of the macroautophagic machinery. Together, this study provides mechanistic insight into lipophagy and reveals a dual role for autophagy in regulating lipid synthesis and turnover in plants.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Autophagy , Lipid Metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Biosynthetic Pathways , Chloroplasts/metabolism , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipid Droplets/ultrastructure , Membrane Lipids/metabolism , Models, Biological , Mutation/genetics , Plant Leaves/cytology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plants, Genetically Modified , Triglycerides/biosynthesis , Vacuoles/metabolism , Vacuoles/ultrastructure
8.
Plant Biotechnol J ; 19(3): 448-461, 2021 03.
Article in English | MEDLINE | ID: mdl-32876985

ABSTRACT

Nitrogen (N) is one of the key essential macronutrients that affects rice growth and yield. Inorganic N fertilizers are excessively used to boost yield and generate serious collateral environmental pollution. Therefore, improving crop N use efficiency (NUE) is highly desirable and has been a major endeavour in crop improvement. However, only a few regulators have been identified that can be used to improve NUE in rice to date. Here we show that the rice NIN-like protein 4 (OsNLP4) significantly improves the rice NUE and yield. Field trials consistently showed that loss-of-OsNLP4 dramatically reduced yield and NUE compared with wild type under different N regimes. In contrast, the OsNLP4 overexpression lines remarkably increased yield by 30% and NUE by 47% under moderate N level compared with wild type. Transcriptomic analyses revealed that OsNLP4 orchestrates the expression of a majority of known N uptake, assimilation and signalling genes by directly binding to the nitrate-responsive cis-element in their promoters to regulate their expression. Moreover, overexpression of OsNLP4 can recover the phenotype of Arabidopsis nlp7 mutant and enhance its biomass. Our results demonstrate that OsNLP4 plays a pivotal role in rice NUE and sheds light on crop NUE improvement.


Subject(s)
Arabidopsis , Oryza , Fertilizers , Nitrates , Nitrogen , Oryza/genetics
9.
Plant Cell ; 30(11): 2761-2778, 2018 11.
Article in English | MEDLINE | ID: mdl-30333147

ABSTRACT

The gaseous hormone ethylene participates in many physiological processes in plants. Ethylene-inhibited root elongation involves PIN-FORMED2 (PIN2)-mediated basipetal auxin transport, but the molecular mechanisms underlying the regulation of PIN2 function by ethylene (and therefore auxin distribution) are poorly understood. Here, we report that the plant-specific and ethylene-responsive HD-Zip gene HB52 is involved in ethylene-mediated inhibition of primary root elongation in Arabidopsis thaliana Biochemical and genetic analyses demonstrated that HB52 is ethylene responsive and acts downstream of ETHYLENE-INSENSITIVE3 (EIN3). HB52 knockdown mutants displayed an ethylene-insensitive phenotype during primary root elongation, while its overexpression resulted in short roots, as observed in ethylene-treated plants. In addition, root auxin distribution and gravitropism were impaired in HB52 knockdown and overexpression lines. Consistent with these findings, in vitro and in vivo binding experiments showed that HB52 regulates the expression of auxin transport-related genes, including PIN2, WAVY ROOT GROWTH1 (WAG1), and WAG2 by physically binding to their promoter regions. These findings suggest that HB52 functions in the ethylene-mediated inhibition of root elongation by modulating the expression of auxin transport components downstream of EIN3, revealing a mechanism in which HB52 acts as an important node in the crosstalk between ethylene and auxin signaling during plant growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Gene Expression Regulation, Plant , Gravitropism/genetics , Gravitropism/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Signal Transduction/genetics , Signal Transduction/physiology
10.
Opt Lett ; 46(19): 4817-4820, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598207

ABSTRACT

Robust models for single-fiber reflectance (SFR) are relatively complex [Opt. Lett.45, 2078 (2020)OPLEDP0146-959210.1364/OL.385845] due to overlapping of the illumination and collection areas that entails probability weighting of the spatial integration of photon-remission. We demonstrate, via analytical means for limiting cases and Monte Carlo simulation of broader conditions, that diffuse photon-remission collected by single-fiber geometry may be scaled over the center-illuminated photon-remission. We specify for a medium revealing Henyey-Greenstein (HG) scattering anisotropy that the diffuse photon-remission from a sub-diffusive area of a top-hat illumination is ∼84.9% of that collected over the same area when under a centered-illumination. This ratio remains consistent over a reduced-scattering fiber-size product of µs'dfib=[10-5,100], for absorption varying 3 orders of magnitude. When applied to hemoglobin oxygenation changes induced in an aqueous phantom using a 200 µm single-fiber probe, the center-illumination-scaled model of SFR produced fitting results agreeing with reference measurements.

11.
Angew Chem Int Ed Engl ; 60(6): 3299-3306, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33151593

ABSTRACT

The recent mechanistic understanding of active sites, adsorbed intermediate products, and rate-determining steps (RDS) of nitrogen (N)-modified carbon catalysts in electrocatalytic oxygen reduction (ORR) and oxygen evolution reaction (OER) are still rife with controversy because of the inevitable coexistence of diverse N configurations and the technical limitations for the observation of formed intermediates. Herein, seven kinds of aromatic molecules with designated single N species are used as model structures to investigate the explicit role of each common N group in both ORR and OER. Specifically, dynamic evolution of active sites and key adsorbed intermediate products including O2 (ads), superoxide anion O2 - *, and OOH* are monitored with in situ spectroscopy. We propose that the formation of *OOH species from O2 - * (O2 - *+H2 O→OOH*+OH- ) is a possible RDS during the ORR process, whereas the generation of O2 from OOH* species is the most likely RDS during the OER process.

12.
New Phytol ; 225(2): 835-847, 2020 01.
Article in English | MEDLINE | ID: mdl-31491809

ABSTRACT

Seed germination is a crucial transition point in plant life and is tightly regulated by environmental conditions through the coordination of two phytohormones, gibberellin and abscisic acid (ABA). To avoid unfavorable conditions, plants have evolved safeguard mechanisms for seed germination. The present contribution reports a novel function of the Arabidopsis MCM1/AGAMOUS/DEFICIENS/SRF(MADS)-box transcription factor ARABIDOPSIS NITRATE REGULATED 1 (ANR1) in seed germination. ANR1 knockout mutant is insensitive to ABA, salt and osmotic stress during the seed germination and early seedling development stages, whereas ANR1-overexpressing lines are hypersensitive. ANR1 is responsive to ABA and abiotic stresses and upregulates the expression of ABA Intolerant (ABI)3 to suppress seed germination. ANR1 and ABI3 have similar expression pattern during seed germination. Genetically, ABI3 acts downstream of ANR1. Chromatin immunoprecipitation and yeast-one-hybrid assays showed that ANR1 could bind to the ABI3 promoter to regulate its expression. In addition, ANR1 acts synergistically with AGL21 to suppress seed germination in response to ABA as evidenced by anr1 agl21 double mutant. Taken together, the results herein demonstrate that the ANR1 plays an important role in regulating seed germination and early postgermination growth. ANR1 and AGL21 together constitutes a safeguard mechanism for seed germination to avoid unfavorable conditions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Gene Expression Regulation, Plant , Germination/genetics , Seeds/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Abscisic Acid/pharmacology , Base Sequence , Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Gibberellins/metabolism , MADS Domain Proteins/metabolism , Mutation/genetics , Osmotic Pressure/drug effects , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Binding/drug effects , Seedlings/drug effects , Seedlings/genetics , Seeds/drug effects , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/genetics
13.
J Exp Bot ; 71(19): 6032-6042, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32585013

ABSTRACT

Nitrogen (N) is indispensable for crop growth and yield, but excessive agricultural application of nitrogenous fertilizers has generated severe environmental problems. A desirable and economical solution to cope with these issues is to improve crop nitrogen use efficiency (NUE). Plant NUE has been a focal point of intensive research worldwide, yet much still has to be learned about its genetic determinants and regulation. Here, we show that rice (Oryza sativa L.) NIN-LIKE PROTEIN 1 (OsNLP1) plays a fundamental role in N utilization. OsNLP1 protein localizes in the nucleus and its transcript level is rapidly induced by N starvation. Overexpression of OsNLP1 improves plant growth, grain yield, and NUE under different N conditions, while knockout of OsNLP1 impairs grain yield and NUE under N-limiting conditions. OsNLP1 regulates nitrate and ammonium utilization by cooperatively orchestrating multiple N uptake and assimilation genes. Chromatin immunoprecipitation and yeast one-hybrid assays showed that OsNLP1 can directly bind to the promoter of these genes to activate their expression. Therefore, our results demonstrate that OsNLP1 is a key regulator of N utilization and represents a potential target for improving NUE and yield in rice.


Subject(s)
Oryza , Fertilizers , Nitrates , Nitrogen , Oryza/genetics , Plant Proteins/genetics
14.
Plant Physiol ; 178(1): 118-129, 2018 09.
Article in English | MEDLINE | ID: mdl-30076222

ABSTRACT

Starch and lipids represent two major forms of carbon and energy storage in plants and play central roles in diverse cellular processes. However, whether and how starch and lipid metabolic pathways interact to regulate metabolism and growth are poorly understood. Here, we show that lipids can partially compensate for the lack of function of transient starch during normal growth and development in Arabidopsis (Arabidopsis thaliana). Disruption of starch synthesis resulted in a significant increase in fatty acid synthesis via posttranslational regulation of the plastidic acetyl-coenzyme A carboxylase and a concurrent increase in the synthesis and turnover of membrane lipids and triacylglycerol. Genetic analysis showed that blocking fatty acid peroxisomal ß-oxidation, the sole pathway for metabolic breakdown of fatty acids in plants, significantly compromised or stunted the growth and development of mutants defective in starch synthesis under long days or short days, respectively. We also found that the combined disruption of starch synthesis and fatty acid turnover resulted in increased accumulation of membrane lipids, triacylglycerol, and soluble sugars and altered fatty acid flux between the two lipid biosynthetic pathways compartmentalized in either the chloroplast or the endoplasmic reticulum. Collectively, our findings provide insight into the role of fatty acid ß-oxidation and the regulatory network controlling fatty acid synthesis, and they reveal the mechanistic basis by which starch and lipid metabolic pathways interact and undergo cross talk to modulate carbon allocation, energy homeostasis, and plant growth.


Subject(s)
Lipid Metabolism , Membrane Lipids/biosynthesis , Plant Leaves/metabolism , Starch/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fatty Acids/biosynthesis , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/growth & development , Plants, Genetically Modified , Triglycerides/biosynthesis
15.
PLoS Genet ; 12(5): e1006076, 2016 May.
Article in English | MEDLINE | ID: mdl-27191951

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pgen.1005760.].

16.
PLoS Genet ; 12(1): e1005760, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26745809

ABSTRACT

The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1), plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots.


Subject(s)
Anthranilate Synthase/biosynthesis , Arabidopsis Proteins/biosynthesis , Peptide Termination Factors/biosynthesis , Plant Growth Regulators/biosynthesis , Plant Roots/growth & development , Anthranilate Synthase/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Ethylenes/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Peptide Termination Factors/genetics , Plant Growth Regulators/genetics , Plant Roots/genetics , Signal Transduction
17.
Angew Chem Int Ed Engl ; 58(26): 8917-8921, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-30985974

ABSTRACT

The abundance of available surface chemical information and edge structures of carbon materials have attracted tremendous interest in catalysis. For the oxygen evolution reaction (OER), the edge effects of carbon materials have rarely been studied in detail because of the complexity of various coexisting edge configurations and the controversy between carbon corrosion and carbon catalysis. Herein, the exact roles of common carbon active edge sites in the OER were interrogated using polycyclic aromatic hydrocarbons (PAHs) with designated configurations (zigzag and armchair) as model probe molecules, with a focus on structure-function relationships. Zigzag configurations of PAHs showed high activity for the OER while also showing a good stability at a reasonable potential. They show a TOF value of 0.276 s-1 in 0.1 m KOH. The catalytic activity of carbon edge sites was further effectively regulated by extending the π conjugation structure at a molecular level.

18.
Plant Physiol ; 174(3): 1517-1530, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28572457

ABSTRACT

Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal ß-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness.


Subject(s)
Arabidopsis/physiology , Darkness , Fatty Acids/metabolism , Membrane Lipids/metabolism , Triglycerides/metabolism , Adaptation, Physiological , Arabidopsis Proteins/metabolism , Lipid Peroxidation , Mutation/genetics , Oxidation-Reduction , Oxidative Stress , Phosphatidic Acids/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Plant Leaves/metabolism , Plant Leaves/ultrastructure
19.
Plant Biotechnol J ; 14(1): 72-84, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25879154

ABSTRACT

Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Droughts , Gossypium/growth & development , Populus/physiology , Salt Tolerance , Transcription Factors/metabolism , Biomass , Carbohydrates/analysis , Cell Size , Gene Expression Regulation, Plant , Genetic Vectors/metabolism , Gossypium/genetics , Gossypium/physiology , Malondialdehyde/metabolism , Plant Roots/growth & development , Plant Stomata/physiology , Plants, Genetically Modified , Populus/genetics , Proline/metabolism , Reactive Oxygen Species/metabolism , Salinity , Stress, Physiological , Water
20.
Cell Mol Neurobiol ; 35(3): 425-432, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25452160

ABSTRACT

Abeta accumulation, a hallmark of Alzheimer's disease, promotes the disease progress in multiple facets. Abeta is formed through amyloidogenic cleavage pathway of amyloid precursor protein (APP). Production of Abeta can be decreased via activation of 5-HT2C receptor, which enhances alternative APP non-amyloidogenic cleavage. Besides, as one of the best characterized Aß degrading enzymes, neprilysin (NEP) in AD progress has drawn more and more attention. We investigated whether there exists any connection between 5-HT2C receptor and NEP expression. The mRNA and protein expressions of NEP were increased after treatment of 5-HT2C receptor agonist RO-60-0175 in concentration- and time-dependent manners, and NEP expression was decreased after treatment of 5-HT2C receptor antagonist SB242084 correspondingly. These results suggest that 5-HT2C receptor may inhibit the Abeta formation by promoting NEP expression. The underlying mechanism will be explored in follow-up study and may provide potential target for AD therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma/metabolism , Neprilysin/biosynthesis , Receptor, Serotonin, 5-HT2C/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL