Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(8): 4328-4336, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32029582

ABSTRACT

Epigenetic alterations and metabolic dysfunction are two hallmarks of aging. However, the mechanism of how their interaction regulates aging, particularly in mammals, remains largely unknown. Here we show ELOVL fatty acid elongase 2 (Elovl2), a gene whose epigenetic alterations are most highly correlated with age prediction, contributes to aging by regulating lipid metabolism. Impaired Elovl2 function disturbs lipid synthesis with increased endoplasmic reticulum stress and mitochondrial dysfunction, leading to key accelerated aging phenotypes. Restoration of mitochondrial activity can rescue age-related macular degeneration (AMD) phenotypes induced by Elovl2 deficiency in human retinal pigmental epithelial (RPE) cells. We revealed an epigenetic-metabolism axis contributing to aging and potentially to antiaging therapy.

2.
Diabetol Metab Syndr ; 15(1): 164, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37491292

ABSTRACT

AIM: We aimed to assess the association between the use of Glucagon-like peptide-1 receptor agonists and the risk of 12 respiratory diseases in patients with type 2 diabetes, obesity, or overweight. METHOD: The PubMed (MEDLINE), EMBASE, Cochrane Library, and ClinicalTrials.gov databases were searched from the establishment of the database to December 24, 2022. Dichotomous outcomes were analyzed using RR and 95% CI calculated from fixed-effects models. RESULTS: Twenty-eight RCTs were ultimately included for analysis, involving a total of 77,485 participants. Compared to controls, patients with GLP-1RAs have a 14% lower risk of respiratory disease (RR 0.86, 95% CI 0.81-0.93 p < 0.0001), with Semaglutid (RR 0.82, 95% CI 0.68-0.97, p = 0.02), Liraglutide (RR 0.86. 95% CI 0.75-0.98, p = 0.03), Dulaglutide (RR 0.82, 95% CI 0.70-0.96, p = 0.02), Albiglutide (RR 0.93,95% CI 0.79-1.10, p = 0.40), Exenatide (RR 0.93, 95% CI 0.74-1.18, p = 0.55), Lixisenatide (RR 0.83, 95% CI 0.62-1.12, p = 0.22), and Efpeglenatide (RR 0.76, 95% CI 0.46-1.24, p = 0.27). Semaglutide, Liraglutide and Dulaglutide reduce the risk of respiratory diseases by 18%, 14% and 18%, respectively.Trial duration, control type, and indication were not associated with the impact of GLP-1 receptor agonists on overall respiratory disease. Among secondary outcomes, the risk of Pulmonary edema (RR 0.66, 95% CI 0.44-0.98, p = 0.04), and Bronchitis (RR 0.86, 95% CI 0.74-1.00, p = 0.04) was reduced. CONCLUSION: In conclusion, GLP-1RAs were linked to a lower risk of overall respiratory diseases, especially Pulmonary edema and Bronchitis. In the future, physicians should pay attention to the relationship between GLP-1 RA and the risk of respiratory diseases and evaluate the efficacy of GLP-1RAs in the primary and secondary prevention of respiratory diseases. Trial registration CRD42023396138.

3.
Signal Transduct Target Ther ; 7(1): 162, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35610223

ABSTRACT

Epigenetic alterations and metabolic dysfunction are two hallmarks of aging. However, the mechanism of how their interaction regulates aging, particularly in mammals, remains largely unknown. Here we show ELOVL fatty acid elongase 2 (Elovl2), a gene whose epigenetic alterations are most highly correlated with age prediction, contributes to aging by regulating lipid metabolism. We applied artificial intelligence to predict the protein structure of ELOVL2 and the interaction with its substrate. Impaired Elovl2 function disturbs lipid synthesis with increased endoplasmic reticulum stress and mitochondrial dysfunction, leading to key aging phenotypes at both cellular and physiological level. Furthermore, restoration of mitochondrial activity can rescue age-related macular degeneration (AMD) phenotypes induced by Elovl2 deficiency in human retinal pigmental epithelial (RPE) cells; this indicates a conservative mechanism in both human and mouse. Taken together, we revealed an epigenetic-metabolism axis contributing to aging and illustrate the power of an AI-based approach in structure-function studies.


Subject(s)
Aging , DNA Methylation , Lipid Metabolism , Macular Degeneration , Aging/genetics , Animals , Artificial Intelligence , DNA Methylation/genetics , Humans , Lipid Metabolism/genetics , Macular Degeneration/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL