Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Infect Dis ; 214(12): 1865-1875, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27683817

ABSTRACT

Klebsiella pneumoniae remains an important cause of intrapulmonary infection and invasive disease worldwide. K. pneumoniae can evade serum killing and phagocytosis primarily through the expression of a polysaccharide capsule, but its pathogenicity is also influenced by host factors. We examined whether CD36, a scavenger receptor that recognizes pathogen and modified self ligands, is a host determinant of K. pneumoniae pathogenicity. Despite differences in serum sensitivity and virulence of 3 distinct K. pneumoniae (hypermucoviscous K1, research K2, and carbapenemase-producing ST258) strains, the absence of CD36 significantly increased host susceptibility to acute intrapulmonary infection by K. pneumoniae, regardless of strain. We demonstrate that CD36 enhances LPS responsiveness to K. pneumoniae to increase downstream cytokine production and macrophage phagocytosis that is independent of polysaccharide capsular antigen. Our study provides new insights into host determinants of K. pneumoniae pathogenicity and raises the possibility that functional mutations in CD36 may predispose individuals to K. pneumoniae syndromes.


Subject(s)
CD36 Antigens/metabolism , Host-Pathogen Interactions , Klebsiella Infections/immunology , Klebsiella pneumoniae/immunology , Lipopolysaccharides/immunology , Macrophages/immunology , Phagocytosis , Animals , Female , Macrophages/microbiology , Male , Mice, Inbred C57BL , Mice, Knockout , Pneumonia, Bacterial/immunology
2.
Blood Adv ; 3(3): 432-445, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30733303

ABSTRACT

Thrombocytopenia is associated with worse outcomes in patients with acute respiratory distress syndrome, which is most commonly caused by infection and marked by alveolar-capillary barrier disruption. However, the mechanisms by which platelets protect the lung alveolar-capillary barrier during infectious injury remain unclear. We found that natively thrombocytopenic Mpl -/- mice deficient in the thrombopoietin receptor sustain severe lung injury marked by alveolar barrier disruption and hemorrhagic pneumonia with early mortality following acute intrapulmonary Pseudomonas aeruginosa (PA) infection; barrier disruption was attenuated by platelet reconstitution. Although PA infection was associated with a brisk neutrophil influx, depletion of airspace neutrophils failed to substantially mitigate PA-triggered alveolar barrier disruption in Mpl -/- mice. Rather, PA cell-free supernatant was sufficient to induce lung epithelial cell apoptosis in vitro and in vivo and alveolar barrier disruption in both platelet-depleted mice and Mpl -/- mice in vivo. Cell-free supernatant from PA with genetic deletion of the type 2 secretion system, but not the type 3 secretion system, mitigated lung epithelial cell death in vitro and lung injury in Mpl -/- mice. Moreover, platelet releasates reduced poly (ADP ribose) polymerase cleavage and lung injury in Mpl -/- mice, and boiling of platelet releasates, but not apyrase treatment, abrogated PA supernatant-induced lung epithelial cell cytotoxicity in vitro. These findings indicate that while neutrophil airspace influx does not potentiate infectious lung injury in the thrombocytopenic host, platelets and their factors protect against severe pulmonary complications from pathogen-secreted virulence factors that promote host cell death even in the absence of overt infection.


Subject(s)
Blood Platelets/metabolism , Lung Injury/etiology , Thrombocytopenia/complications , Animals , Apoptosis , Blood Platelets/cytology , Cell Death , Epithelial Cells , Lung Injury/blood , Mice
SELECTION OF CITATIONS
SEARCH DETAIL