Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Environ Monit Assess ; 194(10): 754, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36083375

ABSTRACT

Organochlorine pesticides (OCPs) are widely used in certain countries. We determined atmospheric concentrations, distribution patterns, and seasonal variations of OCPs at four sites in South Korea for 1 year. Samples of 22 OCPs were collected using a high-volume air sampler, and measured via the isotope dilution method with HRGC/HRMS. In South Korea, pentachlorobenzene (PeCB), hexachlorocyclohexane (HCB), and endosulfan (EnSF) were dominant, accounting for > 87% of total OCPs. Spatial distributions showed significant differences and the highest levels were observed in Seosan (295.2 pg·m-3), indicating the compounding potential of diverse sources as Seosan has concentrated large-scale industrial complexes and agricultural activity (Seoul: 243.6 pg·m-3 > Jeju: 193.5 pg·m-3 > Baengnyeong: 178.2 pg·m-3). The isomeric ratios of OCPs in the South Korean atmosphere indicated that the dominant sources of HCB and dichlorodiphenyltrichloroethane were primarily used in the past; meanwhile, chlordane (CHL) and EnSFs were derived from recent material inputs. Seasonally, OCP concentrations largely peaked in summer with minimum values in winter. This apparent temperature dependence suggests the re-volatilization of accumulated chemicals into the atmosphere. Additionally, an air mass back trajectory indicated the influence of pollutants released from a reservoir through long-range atmospheric transport in the summer. In particular, restricted OCPs are primarily released into the atmosphere by inadvertent sources, such as industrial activities and volatilization from contaminated areas. Thus, severe OCP pollution in Korea is due to the mobile nature of the particles. These data can be useful for the continuous monitoring of long-range transported air pollutants that are transferred between countries.


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Pesticides , Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Seasons
2.
Toxics ; 9(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34357910

ABSTRACT

Ambient particulate matter 2.5 (PM2.5) and total suspended particles (TSPs) are common airborne pollutants that cause respiratory and cardiovascular diseases. We investigated the differences of cytotoxicity and mechanism between PM2.5 and TSP activity in human alveolar epithelial A549 cells. Atmospheric samples from the central district of Seoul were collected and their chemical compositions were analyzed by inductively-coupled plasma mass spectrometry and ion chromatography. PM2.5 and TSP contained high concentrations of heavy metals (Cu, Fe, Zn, and Pb). The most abundant ions in PM2.5 were SO42-, NH4+, and NO3-. A549 cells were exposed to PM2.5 and TSP (25-200 µg/mL) for 24 h. TSP was more cytotoxic than PM2.5 per unit mass. PM2.5 induced oxidative stress, as evidenced by increased levels of a glutamate-cysteine ligase modifier, whereas low-concentration TSP increased hemeoxygenase-1 levels. PM2.5 and TSP did not affect c-Jun N-terminal kinase expression. The levels of nuclear factor erythroid 2-related factor 2 (Nrf2) in PM2.5- and TSP-treated cells decreased significantly in the cytosol and increased in the nucleus. Thus, Nrf2 may be a key transcription factor for detoxifying environmental airborne particles in A549 cells. TSP and PM2.5 could activate the protective Kelch-like ECH-associated protein 1/Nrf2 pathway in A549 cells.

3.
Environ Pollut ; 233: 735-744, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29126095

ABSTRACT

The origin of PM2.5 has long been the subject of debate and stable isotopic tools have been applied to decipher. In this study, weekly PM2.5 samples were simultaneously collected at an urban (Seoul) and rural (Baengnyeong Island) site in Korea from January 2014 through February 2016. The seasonal variation of isotopic species showed significant seasonal differences with sinusoidal variation. The isotopic results implied that isotope species from Baengnyeong were mostly originated from coal combustion during China's winter heating seasons, whereas in summer, the isotopic patterns observed that were more likely to be from marine. In Seoul, coal combustion related isotopic patterns increased during China's winter heating period while vehicle related isotopic patterns were dominated whole seasons by default. Therefore, aerosol formation was originated from long-range transported coal combustion-related NOx by vehicle-related NH3 in Seoul. δN-NH4+ in Seoul showed highly enriched 15N compositions in all seasons, indicating that NH3 from vehicle emission is the important source of NH4+ in PM2.5 in Seoul. In addition, Baengnyeong should be consistently considered as a key region for observing the changes of isotopic features depend on the contribution of individual emissions to the atmospheric as a result of the reduction of coal consumption in China.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Heating , Particulate Matter/analysis , Aerosols/analysis , Ammonia/analysis , China , Coal , Nitrates/analysis , Republic of Korea , Seasons , Seoul , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL