Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cardiovasc Diabetol ; 23(1): 28, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218882

ABSTRACT

BACKGROUND: Sarcopenia is frequently found in patients with heart failure with reduced ejection fraction (HFrEF) and is associated with reduced exercise capacity, poor quality of life and adverse outcomes. Recent evidence suggests that axial thoracic skeletal muscle size could be used as a surrogate to assess sarcopenia in HFrEF. Since diabetes mellitus (DM) is one of the most common comorbidities with HFrEF, we aimed to explore the potential association of axial thoracic skeletal muscle size with left ventricular (LV) remodeling and determine its prognostic significance in this condition. METHODS: A total of 243 diabetes patients with HFrEF were included in this study. Bilateral axial thoracic skeletal muscle size was obtained using cardiac MRI. Patients were stratified by the tertiles of axial thoracic skeletal muscle index (SMI). LV structural and functional indices, as well as amino-terminal pro-B-type natriuretic peptide (NT-proBNP), were measured. The determinants of elevated NT-proBNP were assessed using linear regression analysis. The associations between thoracic SMI and clinical outcomes were assessed using a multivariable Cox proportional hazards model. RESULTS: Patients in the lowest tertile of thoracic SMI displayed a deterioration in LV systolic strain in three components, together with an increase in LV mass and a heavier burden of myocardial fibrosis (all P < 0.05). Moreover, thoracic SMI (ß = -0.25; P < 0.001), rather than body mass index (ß = -0.04; P = 0.55), was independently associated with the level of NT-proBNP. The median follow-up duration was 33.6 months (IQR, 20.4-52.8 months). Patients with adverse outcomes showed a lower thoracic SMI (40.1 [34.3, 47.9] cm2/m2 vs. 45.3 [37.3, 55.0] cm2/m2; P < 0.05) but a similar BMI (P = 0.76) compared with those without adverse outcomes. A higher thoracic SMI indicated a lower risk of adverse outcomes (hazard ratio: 0.96; 95% confidence interval: 0.92-0.99; P = 0.01). CONCLUSIONS: With respect to diabetes patients with HFrEF, thoracic SMI is a novel alternative for evaluating muscle wasting in sarcopenia that can be obtained by a readily available routine cardiac MRI protocol. A reduction in thoracic skeletal muscle size predicts poor outcomes in the context of DM with HFrEF.


Subject(s)
Diabetes Mellitus , Heart Failure , Sarcopenia , Ventricular Dysfunction, Left , Humans , Heart Failure/diagnostic imaging , Sarcopenia/diagnostic imaging , Sarcopenia/epidemiology , Quality of Life , Biomarkers , Stroke Volume/physiology , Natriuretic Peptide, Brain , Magnetic Resonance Imaging , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Peptide Fragments , Muscle, Skeletal/diagnostic imaging , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology
2.
Crit Rev Biotechnol ; : 1-16, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705840

ABSTRACT

5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.

3.
Int J Cardiol ; 371: 480-485, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36115439

ABSTRACT

BACKGROUND: The dynamic changes and apical aneurysm formation in apical hypertrophic cardiomyopathy (HCM) have not been specifically described. This study aimed to describe these changes to better understand the progression of apical HCM. METHODS AND RESULTS: Seventy-two patients with apical HCM who underwent at least two cardiac magnetic resonance (CMR) examinations were retrospectively included in this study. The mean interval between the first and last CMR examinations was 50.1 ± 26.8 months (ranging from 4 to 118 months). Compared with the initial values, the left atrial diameter, maximum left ventricular wall thickness and late gadolinium enhancement extent significantly increased (all P < 0.05), while the left ventricular ejection fraction significantly decreased (P < 0.05), at the latest CMR examination. More importantly, the dynamic process of apical aneurysm formation in apical HCM was observed in a subset of patients, which may follow these four stages: starting with systolic apical cavity obliteration, then broadening of the apical slit in systole, further developing into an apical outpouching, and finally forming an apical aneurysm. Eleven patients experienced adverse cardiovascular events, including new-onset or progressive atrial fibrillation (n = 7), hospitalization with heart failure (n = 3) and implantable cardioverter defibrillator intervention (n = 1), at the time of the latest CMR examination. CONCLUSIONS: In the progression of apical HCM, cardiac structure and function will change accordingly. Apical aneurysm formation in apical HCM is a chronic and continuous dynamic process that may follow a 4-step pathway of disease progression.


Subject(s)
Aneurysm , Apical Hypertrophic Cardiomyopathy , Cardiomyopathy, Hypertrophic , Humans , Pilot Projects , Gadolinium , Contrast Media , Ventricular Function, Left , Stroke Volume , Retrospective Studies , Magnetic Resonance Spectroscopy
4.
Appl Microbiol Biotechnol ; 88(1): 155-65, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20614217

ABSTRACT

A novel beta-galactosidase gene, zd410, was isolated by screening a soil metagenomic library. Sequence analysis revealed that zd410 encodes a protein of 672 amino acids with a predicted molecular weight of 78.6 kDa. The recombinant ZD410 was expressed and purified in Pichia pastoris, with a yield of ca. 300 mg from 1 L culture. The purified enzyme displayed optimal activity at 38 degrees C and pH 7.0. Given that the enzyme had 54% of the maximal activity at 20 degrees C and 11% of the maximal activity at close to 0 degrees C, ZD410 was regarded as a cold-adapted beta-galactosidase. ZD410 displays high enzymatic activity for its synthetic substrate-ONPG (o-nitrophenyl-beta-D-galactopyranoside, 243 U/mg) and its natural substrate-lactose (25.4 U/mg), while its activity was slightly stimulated by addition of Na(+), K(+), or Ca(2+) at low concentrations. ZD410 is a good candidate of beta-galactosidases for food industry after further study.


Subject(s)
Metagenome , Soil Microbiology , beta-Galactosidase/genetics , beta-Galactosidase/metabolism , Calcium/pharmacology , Cloning, Molecular , Cluster Analysis , Coenzymes/pharmacology , Enzyme Stability , Gene Expression , Hydrogen-Ion Concentration , Lactose/metabolism , Molecular Sequence Data , Molecular Weight , Nitrophenylgalactosides/metabolism , Phylogeny , Pichia/genetics , Potassium/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sodium/pharmacology , Temperature , beta-Galactosidase/chemistry , beta-Galactosidase/isolation & purification
5.
Int J Cardiol ; 293: 278-285, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31303392

ABSTRACT

AIMS: This study aimed to compare the diagnostic accuracy of stress myocardial perfusion imaging between cardiac magnetic resonance (CMR) and nuclear medical imaging, including single-photon emission computed tomography (SPECT) and positron emission tomography (PET), for the diagnosis of hemodynamically significant coronary artery disease (CAD) with fractional flow reserve (FFR) as the reference standard. METHODS AND RESULTS: We searched PubMed and Embase for all published studies that evaluated the diagnostic accuracy of stress myocardial perfusion imaging modalities, including CMR, SPECT, and PET, to diagnose hemodynamically significant CAD with FFR as the reference standard. A total of 28 articles met the inclusion criteria and were included in the meta-analysis: 14 CMR, 13 SPECT, and 5 PET articles. The results demonstrated a pooled sensitivity of 0.88 (95% confidence interval [CI]: 0.80-0.93), 0.69 (95% CI: 0.56-0.79), and 0.83 (95% CI: 0.70-0.91), and a pooled specificity of 0.89 (95% CI: 0.85-0.93), 0.85 (95% CI, 0.80-0.89), and 0.89 (95% CI, 0.86-0.91) for CMR, SPECT, and PET, respectively. The area under the curve (AUC) of CMR, PET, and SPECT was 0.94 (95% CI, 0.92-0.96), 0.92 (95% CI, 0.89-0.94), and 0.87 (95% CI, 0.83-0.89), respectively. CONCLUSIONS: CMR and PET both have high accuracy and SPECT has moderate accuracy to detect hemodynamically significant CAD with FFR as the reference standard. Furthermore, the diagnostic accuracy of CMR at 3.0 T is superior to 1.5 T.


Subject(s)
Coronary Artery Disease/diagnosis , Magnetic Resonance Imaging, Cine/methods , Myocardial Perfusion Imaging/methods , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon/methods , Coronary Artery Disease/physiopathology , Coronary Circulation , Dimensional Measurement Accuracy , Fractional Flow Reserve, Myocardial , Humans
SELECTION OF CITATIONS
SEARCH DETAIL