Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.253
Filter
Add more filters

Publication year range
1.
Cell ; 174(6): 1549-1558.e14, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100189

ABSTRACT

Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.


Subject(s)
Fatty Acids, Nonesterified/biosynthesis , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Acetyl Coenzyme A/metabolism , Glucose/metabolism , Glycolysis , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Lipogenesis , NADP/metabolism , Pentose Phosphate Pathway/genetics , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Cell ; 166(3): 716-728, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27426949

ABSTRACT

Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders.


Subject(s)
Cholinergic Neurons/metabolism , Fear/physiology , Habenula/physiology , Memory/physiology , Receptors, GABA-B/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Neural Pathways , Neurotransmitter Agents/metabolism , Synaptic Transmission
3.
Immunity ; 54(4): 632-647.e9, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33667382

ABSTRACT

Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.


Subject(s)
Aging/immunology , Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Cytoplasm/immunology , DNA-Activated Protein Kinase/immunology , DNA/immunology , Inflammation/immunology , Animals , Cell Line , Cell Line, Tumor , Cell Nucleus/immunology , Cell Proliferation/physiology , DNA Repair/immunology , HEK293 Cells , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , U937 Cells
4.
Cell ; 163(1): 230-45, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26365490

ABSTRACT

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome.


Subject(s)
Embryonic Stem Cells/virology , Endogenous Retroviruses/genetics , Proviruses/genetics , Animals , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Embryonal Carcinoma Stem Cells/virology , Epigenesis, Genetic , Mice , Small Ubiquitin-Related Modifier Proteins/metabolism
5.
Genome Res ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906680

ABSTRACT

Transcription and translation are intertwined processes where mRNA isoforms are crucial intermediaries. However, methodological limitations in analyzing translation at the mRNA isoform level have left gaps in our understanding of critical biological processes. To address these gaps, we developed an integrated computational and experimental framework called long-read Ribo-STAMP (LR-Ribo-STAMP) that capitalizes on advancements in long-read sequencing and RNA-base editing-mediated technologies to simultaneously profile translation and transcription at both gene and mRNA isoform levels. We also developed the EditsC metric to quantify editing and leverage the single-molecule, full-length transcript information provided by long-read sequencing. Here, we report concordance between gene-level translation profiles obtained with long-read and short-read Ribo-STAMP. We show that LR-Ribo-STAMP successfully profiles translation of mRNA isoforms and links regulatory features, such as upstream open reading frames (uORFs), to translation measurements. We apply LR-Ribo-STAMP to discovering translational differences at both gene and isoform levels in a triple-negative breast cancer cell line under normoxia and hypoxia and find that LR-Ribo-STAMP effectively delineates orthogonal transcriptional and translation shifts between conditions. We also discover regulatory elements that distinguish translational differences at the isoform level. We highlight GRK6, where hypoxia is observed to increase expression and translation of a shorter mRNA isoform, giving rise to a truncated protein without the AGC Kinase domain. Overall, LR-Ribo-STAMP is an important advance in our repertoire of methods that measure mRNA translation with isoform sensitivity.

6.
Proc Natl Acad Sci U S A ; 121(1): e2316054120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147548

ABSTRACT

The sluggish electron transfer kinetics in electrode polarization driven oxygen evolution reaction (OER) result in big energy barriers of water electrolysis. Accelerating the electron transfer at the electrolyte/catalytic layer/catalyst bulk interfaces is an efficient way to improve electricity-to-hydrogen efficiency. Herein, the electron transfer at the Sr3Fe2O7@SrFeOOH bulk/catalytic layer interface is accelerated by heating to eliminate charge disproportionation from Fe4+ to Fe3+ and Fe5+ in Sr3Fe2O7, a physical effect to thermally stabilize high-spin Fe4+ (t2g3eg1), providing available orbitals as electron transfer channels without pairing energy. As a result of thermal-induced changes in electronic states via thermal comproportionation, a sudden increase in OER performances was achieved as heating to completely suppress charge disproportionation, breaking a linear Arrhenius relationship. The strategy of regulating electronic states by thermal field opens a broad avenue to overcome the electron transfer barriers in water splitting.

7.
Proc Natl Acad Sci U S A ; 121(18): e2319833121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648480

ABSTRACT

Sirt2 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylase that can remove both acetyl group and long-chain fatty acyl groups from lysine residues of many proteins. It was reported to affect inflammatory bowel disease (IBD) symptoms in a mouse model. However, conflicting roles were reported, with genetic knockout aggravating while pharmacological inhibition alleviating IBD symptoms. These seemingly conflicting reports cause confusion and deter further efforts in developing Sirt2 inhibitors as a potential treatment strategy for IBD. We investigated these conflicting reports and elucidated the role of Sirt2 in the mouse model of IBD. We essentially replicated these conflicting results and confirmed that Sirt2 inhibitors' protective effect is not through off-targets as two very different Sirt2 inhibitors (TM and AGK2) showed similar protection in the IBD mouse model. We believe that the differential effects of inhibitors and knockout are due to the fact that the Sirt2 inhibitors only inhibit some but not all the activities of Sirt2. This hypothesis is confirmed by the observation that a PROTAC degrader of Sirt2 did not protect mice in the IBD model, similar to Sirt2 knockout. Our study provides an interesting example where genetic knockout and pharmacological inhibition do not align and emphasizes the importance of developing substrate-dependent inhibitors. Importantly, we showed that the effect of Sirt2 inhibition in IBD is through regulating the gut epithelium barrier by inhibiting Arf6-mediated endocytosis of E-cadherin, a protein important for the intestinal epithelial integrity. This mechanistic understanding further supports Sirt2 as a promising therapeutic target for treating IBD.


Subject(s)
Colitis , Intestinal Mucosa , Sirtuin 2 , Animals , Humans , Mice , Cadherins/metabolism , Cadherins/genetics , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Disease Models, Animal , Furans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Mice, Inbred C57BL , Mice, Knockout , Quinolines , Sirtuin 2/metabolism , Sirtuin 2/antagonists & inhibitors , Sirtuin 2/genetics
8.
Hum Mol Genet ; 32(13): 2205-2218, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37014740

ABSTRACT

As an aneuploidy, trisomy is associated with mammalian embryonic and postnatal abnormalities. Understanding the underlying mechanisms involved in mutant phenotypes is broadly important and may lead to new strategies to treat clinical manifestations in individuals with trisomies, such as trisomy 21 [Down syndrome (DS)]. Although increased gene dosage effects because of a trisomy may account for the mutant phenotypes, there is also the possibility that phenotypic consequences of a trisomy can arise because of the presence of a freely segregating extra chromosome with its own centromere, i.e. a 'free trisomy' independent of gene dosage effects. Presently, there are no reports of attempts to functionally separate these two types of effects in mammals. To fill this gap, here we describe a strategy that employed two new mouse models of DS, Ts65Dn;Df(17)2Yey/+ and Dp(16)1Yey/Df(16)8Yey. Both models carry triplications of the same 103 human chromosome 21 gene orthologs; however, only Ts65Dn;Df(17)2Yey/+ mice carry a free trisomy. Comparison of these models revealed the gene dosage-independent impacts of an extra chromosome at the phenotypic and molecular levels for the first time. They are reflected by impairments of Ts65Dn;Df(17)2Yey/+ males in T-maze tests when compared with Dp(16)1Yey/Df(16)8Yey males. Results from the transcriptomic analysis suggest the extra chromosome plays a major role in trisomy-associated expression alterations of disomic genes beyond gene dosage effects. This model system can now be used to deepen our mechanistic understanding of this common human aneuploidy and obtain new insights into the effects of free trisomies in other human diseases such as cancers.


Subject(s)
Down Syndrome , Male , Mice , Humans , Animals , Down Syndrome/genetics , Trisomy/genetics , Aneuploidy , Chromosomes , Gene Dosage , Disease Models, Animal , Mammals/genetics
9.
Plant Physiol ; 195(1): 652-670, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38412470

ABSTRACT

Poplar (Populus) is a well-established model system for tree genomics and molecular breeding, and hybrid poplar is widely used in forest plantations. However, distinguishing its diploid homologous chromosomes is difficult, complicating advanced functional studies on specific alleles. In this study, we applied a trio-binning design and PacBio high-fidelity long-read sequencing to obtain haplotype-phased telomere-to-telomere genome assemblies for the 2 parents of the well-studied F1 hybrid "84K" (Populus alba × Populus tremula var. glandulosa). Almost all chromosomes, including the telomeres and centromeres, were completely assembled for each haplotype subgenome apart from 2 small gaps on one chromosome. By incorporating information from these haplotype assemblies and extensive RNA-seq data, we analyzed gene expression patterns between the 2 subgenomes and alleles. Transcription bias at the subgenome level was not uncovered, but extensive-expression differences were detected between alleles. We developed machine-learning (ML) models to predict allele-specific expression (ASE) with high accuracy and identified underlying genome features most highly influencing ASE. One of our models with 15 predictor variables achieved 77% accuracy on the training set and 74% accuracy on the testing set. ML models identified gene body CHG methylation, sequence divergence, and transposon occupancy both upstream and downstream of alleles as important factors for ASE. Our haplotype-phased genome assemblies and ML strategy highlight an avenue for functional studies in Populus and provide additional tools for studying ASE and heterosis in hybrids.


Subject(s)
Alleles , Genome, Plant , Populus , Populus/genetics , Genome, Plant/genetics , Gene Expression Regulation, Plant , Haplotypes/genetics , Hybridization, Genetic , Machine Learning
10.
Mol Psychiatry ; 29(3): 767-781, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38238548

ABSTRACT

BACKGROUND: Although network analysis studies of psychiatric syndromes have increased in recent years, most have emphasized centrality symptoms and robust edges. Broadening the focus to include bridge symptoms within a systematic review could help to elucidate symptoms having the strongest links in network models of psychiatric syndromes. We conducted this systematic review and statistical evaluation of network analyses on depressive and anxiety symptoms to identify the most central symptoms and bridge symptoms, as well as the most robust edge indices of networks. METHODS: A systematic literature search was performed in PubMed, PsycINFO, Web of Science, and EMBASE databases from their inception to May 25, 2022. To determine the most influential symptoms and connections, we analyzed centrality and bridge centrality rankings and aggregated the most robust symptom connections into a summary network. After determining the most central symptoms and bridge symptoms across network models, heterogeneity across studies was examined using linear logistic regression. RESULTS: Thirty-three studies with 78,721 participants were included in this systematic review. Seventeen studies with 23 cross-sectional networks based on the Patient Health Questionnaire (PHQ) and Generalized Anxiety Disorder (GAD-7) assessments of clinical and community samples were examined using centrality scores. Twelve cross-sectional networks based on the PHQ and GAD-7 assessments were examined using bridge centrality scores. We found substantial variability between study samples and network features. 'Sad mood', 'Uncontrollable worry', and 'Worrying too much' were the most central symptoms, while 'Sad mood', 'Restlessness', and 'Motor disturbance' were the most frequent bridge centrality symptoms. In addition, the connection between 'Sleep' and 'Fatigue' was the most frequent edge for the depressive and anxiety symptoms network model. CONCLUSION: Central symptoms, bridge symptoms and robust edges identified in this systematic review can be viewed as potential intervention targets. We also identified gaps in the literature and future directions for network analysis of comorbid depression and anxiety.


Subject(s)
Anxiety , Depression , Female , Humans , Male , Anxiety/complications , Anxiety/therapy , Anxiety Disorders , Cross-Sectional Studies , Depression/complications , Depression/therapy
11.
Cell Mol Life Sci ; 81(1): 76, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315203

ABSTRACT

Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.


Subject(s)
Histones , Neoplasms , Humans , Acylation , Histones/metabolism , Acetylation , Protein Processing, Post-Translational , Neoplasms/genetics
12.
Proc Natl Acad Sci U S A ; 119(39): e2203273119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122226

ABSTRACT

Microglia are the central nervous system (CNS)-resident macrophages involved in neural inflammation, neurogenesis, and neural activity regulation. Previous studies have shown that naturally occurring neuronal apoptosis plays a critical role in regulating microglial colonization of the brain in zebrafish. However, the molecular signaling cascades underlying neuronal apoptosis-mediated microglial colonization and the regulation of these cascades remain undefined. Here, we show that basic leucine zipper (b-Zip) transcription factors, Mafba and Mafbb, two zebrafish orthologs of mammalian MAFB, are key regulators in neuronal apoptosis-mediated microglial colonization of the brain in zebrafish. We document that the loss of Mafba and Mafbb function perturbs microglial colonization of the brain. We further demonstrate that Mafba and Mafbb act cell-autonomously and cooperatively to orchestrate microglial colonization, at least in part, by regulating the expression of G protein-coupled receptor 34a (Gpr34a), which directs peripheral macrophage recruitment into the brain through sensing the lysophosphatidylserine (lysoPS) released by the apoptotic neurons. Our study reveals that Mafba and Mafbb regulate neuronal apoptosis-mediated microglial colonization of the brain in zebrafish via the lysoPS-Gpr34a pathway.


Subject(s)
Microglia , Zebrafish , Animals , Brain/physiology , Chemotaxis , Maf Transcription Factors , Mammals/metabolism , Microglia/metabolism , Oncogene Proteins , Transcription Factors/metabolism , Zebrafish/metabolism , Zebrafish Proteins
13.
Immunology ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866391

ABSTRACT

The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, ß-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.

14.
J Am Chem Soc ; 146(11): 7274-7287, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38377953

ABSTRACT

The utilization of anionic redox chemistry provides an opportunity to further improve the energy density of Li-ion batteries, particularly for Li-rich layered oxides. However, oxygen-based hosts still suffer from unfavorable structural rearrangement, including the oxygen release and transition metal (TM)-ion migration, in association with the tenuous framework rooted in the ionicity of the TM-O bonding. An intrinsic solution, by using a sulfur-based host with strong TM-S covalency, is proposed here to buffer the lattice distortion upon the highly activating sulfur redox process, and it achieves howling success in stabilizing the host frameworks. Experimental results demonstrate the prolonged preservation of the layered sulfur lattice, especially the honeycomb superlattice, during the Li+ extraction/insertion process in contrast to the large structural degeneration in Li-rich oxides. Moreover, the Li-rich sulfide cathodes exhibited a negligible overpotential of 0.08 V and a voltage drop of 0.13 mV/cycle, while maintaining a substantial reversible capacity upon cycling. These superior electrochemical performances can be unambiguously ascribed to the much shorter trajectories of sulfur in comparison to those of oxygen revealed by molecular dynamics simulations at a large scale (∼30 nm) and a long time scale (∼300 ps) via high-dimensional neural network potentials during the delithiation process. Our findings highlight the importance of stabilizing host frameworks and establish general guidance for designing Li-rich cathodes with durable anionic redox chemistry.

15.
J Am Chem Soc ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865282

ABSTRACT

As the dimensionality of materials generally affects their characteristics, thin films composed of low-dimensional nanomaterials, such as nanowires (NWs) or nanoplates, are of great importance in modern engineering. Among various bottom-up film fabrication strategies, interfacial assembly of nanoscale building blocks holds great promise in constructing large-scale aligned thin films, leading to emergent or enhanced collective properties compared to individual building blocks. As for 1D nanostructures, the interfacial self-assembly causes the morphology orientation, effectively achieving anisotropic electrical, thermal, and optical conduction. However, issues such as defects between each nanoscale building block, crystal orientation, and homogeneity constrain the application of ordered films. The precise control of transdimensional synthesis and the formation mechanism from 1D to 2D are rarely reported. To meet this gap, we introduce an interfacial-assembly-induced interfacial synthesis strategy and successfully synthesize quasi-2D nanofilms via the oriented attachment of 1D NWs on the liquid interface. Theoretical sampling and simulation show that NWs on the liquid interface maintain their lowest interaction energy for the ordered crystal plane (110) orientation and then rearrange and attach to the quasi-2D nanofilm. This quasi-2D nanofilm shows enhanced electric conductivity and unique optical properties compared with its corresponding 1D geometry materials. Uncovering these growth pathways of the 1D-to-2D transition provides opportunities for future material design and synthesis at the interface.

16.
BMC Plant Biol ; 24(1): 80, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38291371

ABSTRACT

BACKGROUND: Higher planting densities typically cause a decline in grain weight, limiting the potential for high maize yield. Additionally, variations in grain filling occur at different positions within the maize ear. Abscisic acid (ABA) is important for grain filling and regulates grain weight. However, the effects of exogenous ABA on the filling process of maize grains at different ear positions under high planting density are poorly understood. In this study, two summer maize hybrids (DengHai605 (DH605) and ZhengDan958 (ZD958)) commonly grown in China were used to examine the effects of ABA application during the flowering stage on grain filling properties, starch accumulation, starch biosynthesis associated enzyme activities, and hormone levels of maize grain (including inferior grain (IG) and superior grain (SG)) under high planting density. RESULTS: Our results showed that exogenous ABA significantly increased maize yield, primarily owing to a higher grain weight resulting from an accelerated grain filling rate relative to the control. There was no significant difference in yield between DH605 and ZD958 in the control and ABA treatments. Moreover, applying ABA promoted starch accumulation by raising the activities of sucrose synthase, ADP-glucose pyrophosphorylase, granule-bound starch synthases, soluble starch synthase, and starch branching enzyme in grains. It also increased the levels of zeatin riboside, indole-3-acetic acid, and ABA and decreased the level of gibberellin in grains, resulting in more efficient grain filling. Notably, IG exhibited a less efficient filling process compared to SG, probably due to lower starch biosynthesis associated enzyme activities and an imbalance in hormone contents. Nevertheless, IG displayed greater sensitivity to exogenous ABA than SG, suggesting that appropriate cultural measures to improve IG filling may be a viable strategy to further increase maize yield. CONCLUSIONS: According to our results, spraying exogenous ABA could effectively improve grain filling properties, accelerate starch accumulation by increasing relevant enzyme activities, and regulate hormone levels in grains, resulting in higher grain weight and yield of maize under high planting density. Our findings offer more evidence for using exogenous hormones to improve maize yield under high planting density.


Subject(s)
Abscisic Acid , Starch Synthase , Zea mays/physiology , Starch , Edible Grain , Hormones
17.
Small ; 20(3): e2305727, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37699770

ABSTRACT

Promoting the proton-coupled electron transfer process in order to solve the sluggish carrier migration dynamics is an efficient way to accelerate the photocatalytic CO2 reduction (PCR) process. Herein, through the reduction of Sn4+ by amino and sulfhydryl groups, Sn0 particles are lodged in S-vacancies SnS2 nanosheets. The high conductance of Sn0 particles expedites the collection and transport of photogenerated electrons, activating the surrounding surface of unsaturated sulfur (Sx 2- ) and thus lowering the energy barrier for generation of *COOH. Meanwhile, S-vacancies boost H2 O adsorption while Sx 2- increases CO2 adsorption, as demonstrated by density functional theory (DFT), obtaining a selectivity of 97.88% CO and yield of 295.06 µmol g-1 h-1 without the addition of co-catalysts and sacrificial agents. This work provides a new approach to building a fast electron transfer interface between metal particles and semiconductors, which works in tandem with S-vacancies and Sx 2- to boost the efficiency of photocatalytic CO2 reduction to CO in pure water vapor environment.

18.
Small ; 20(6): e2305706, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37788906

ABSTRACT

Developing versatile systems that can concurrently achieve energy saving and energy generation is critical to accelerate carbon neutrality. However, challenges on designing highly effective, large scale, and multifunctional photonic film hinder the concurrent combination of passive daytime radiative cooling (PDRC) and utilization of sustainable clean energies. Herein, a versatile scalable photonic film (Ecoflex@h-BN) with washable property and excellent mechanical stability is developed by combining the excellent scattering efficiency of the hexagonal boron nitride (h-BN) nanoplates with the high infrared emissivity and ideal triboelectric negative property of the Ecoflex matrix. Strikingly, sufficiently high solar reflectance (0.92) and ideal emissivity (0.97) endow the Ecoflex@h-BN film with subambient cooling effect of ≈9.5 °C at midday during the continuous outdoor measurements. In addition, the PDRC Ecoflex@h-BN film-based triboelectric nanogenerator (PDRC-TENG) exhibits a maximum peak power density of 0.5 W m-2 . By reasonable structure design, the PDRC-TENG accomplishes effective wind energy harvesting and can successfully drive the electronic device. Meanwhile, an on-skin PDRC-TENG is fabricated to harvest human motion energy and monitor moving states. This research provides a novel design of a multifunctional PDRC photonic film, and offers a versatile strategy to realize concurrent PDRC and sustainable energies harvesting.

19.
Small ; 20(26): e2308661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258607

ABSTRACT

Passive daytime radiative cooling (PDRC) materials with sustainable energy harvesting capability is critical to concurrently reduce traditional cooling energy utilized for thermal comfort and transfer natural clean energies into electricity. Herein, a versatile photonic film (Ecoflex@BTO@UAFL) based on a novel fluorescent luminescence color passive radiative cooling with triboelectric and piezoelectric effect is developed by filling the dielectric BaTiO3 (BTO) nanoparticles and ultraviolet absorption fluorescent luminescence (UAFL) powder into the elastic Ecoflex matrix. Test results demonstrate that the Ecoflex@BTO@UAFL photonic film exhibits a maximum passive radiative cooling effect of ∽10.1 °C in the daytime. Meanwhile, its average temperature drop in the daytime is ~4.48 °C, which is 0.91 °C higher than that of the Ecoflex@BTO photonic film (3.56 °C) due to the addition of UAFL material. Owing to the high dielectric constant and piezoelectric effect of BTO nanoparticles, the maximum power density (0.53 W m-2, 1 Hz @ 10 N) of the Ecoflex@BTO photonic film-based hybrid nanogenerator is promoted by 70.9% compared to the Ecoflex film-based TENG. This work provides an ingenious strategy for combining PDRC effects with triboelectric and piezoelectric properties, which can spontaneously achieve thermal comfort and energy conservation, offering a new insight into multifunctional energy saving.

20.
J Transl Med ; 22(1): 460, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750462

ABSTRACT

BACKGROUND: Chaperonin Containing TCP1 Subunit 6 A (CCT6A) is a prominent protein involved in the folding and stabilization of newly synthesized proteins. However, its roles and underlying mechanisms in lung adenocarcinoma (LUAD), one of the most aggressive cancers, remain elusive. METHODS: Our study utilized in vitro cell phenotype experiments to assess CCT6A's impact on the proliferation and invasion capabilities of LUAD cell lines. To delve into CCT6A's intrinsic mechanisms affecting glycolysis and proliferation in lung adenocarcinoma, we employed transcriptomic sequencing and liquid chromatography-mass spectrometry analysis. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (CHIP) assays were also conducted to substantiate the mechanism. RESULTS: CCT6A was found to be significantly overexpressed in LUAD and associated with a poorer prognosis. The silencing of CCT6A inhibited the proliferation and migration of LUAD cells and elevated apoptosis rates. Mechanistically, CCT6A interacted with STAT1 protein, forming a complex that enhances the stability of STAT1 by protecting it from ubiquitin-mediated degradation. This, in turn, facilitated the transcription of hexokinase 2 (HK2), a critical enzyme in aerobic glycolysis, thereby stimulating LUAD's aerobic glycolysis and progression. CONCLUSION: Our findings reveal that the CCT6A/STAT1/HK2 axis orchestrated a reprogramming of glucose metabolism and thus promoted LUAD progression. These insights position CCT6A as a promising candidate for therapeutic intervention in LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , Chaperonin Containing TCP-1 , Disease Progression , Glycolysis , Hexokinase , Lung Neoplasms , STAT1 Transcription Factor , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Hexokinase/metabolism , STAT1 Transcription Factor/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Chaperonin Containing TCP-1/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Apoptosis , Signal Transduction , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL