Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Electrophoresis ; 45(9-10): 794-804, 2024 May.
Article in English | MEDLINE | ID: mdl-38161244

ABSTRACT

Facial image-based kinship verification represents a burgeoning frontier within the realms of computer vision and biomedicine. Recent genome-wide association studies have underscored the heritability of human facial morphology, revealing its predictability based on genetic information. These revelations form a robust foundation for advancing facial image-based kinship verification. Despite strides in computer vision, there remains a discernible gap between the biomedical and computer vision domains. Notably, the absence of family photo datasets established through biological paternity testing methods poses a significant challenge. This study addresses this gap by introducing the biological kinship visualization dataset, encompassing 5773 individuals from 2412 families with biologically confirmed kinship. Our analysis delves into the distribution and influencing factors of facial similarity among parent-child pairs, probing the potential association between forensic short tandem repeat polymorphisms and facial similarity. Additionally, we have developed a machine learning model for facial image-based kinship verification, achieving an accuracy of 0.80 in the dataset. To facilitate further exploration, we have established an online tool and database, accessible at http://120.55.161.230:88/.


Subject(s)
Face , Humans , Face/anatomy & histology , Male , Female , Forensic Genetics/methods , Machine Learning , Genetic Association Studies/methods , Microsatellite Repeats , Genome-Wide Association Study/methods
2.
Respir Res ; 25(1): 212, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762455

ABSTRACT

Paraquat (PQ) is a widely used herbicide and a common cause of poisoning that leads to pulmonary fibrosis with a high mortality rate. However, the underlying mechanisms of PQ-induced pulmonary fibrosis and whether pulmonary epithelial cell senescence is involved in the process remain elusive. In this study, PQ-induced pulmonary epithelial cell senescence and Hippo-YAP/TAZ activation were observed in both C57BL/6 mice and human epithelial cells. PQ-induced senescent pulmonary epithelial cells promoted lung fibroblast transformation through secreting senescence-associated secretory phenotype (SASP) factors. Yap/Taz knockdown in mice lungs significantly decreased the expression of downstream profibrotic protein Ctgf and senescent markers p16 and p21, and alleviated PQ-induced pulmonary fibrosis. Interfering YAP/TAZ in senescent human pulmonary epithelial cells resulted in decreased expression of the anti-apoptosis protein survivin and elevated level of apoptosis. In conclusion, our findings reveal a novel mechanism by which the involvement of Hippo-YAP/TAZ activation in pulmonary epithelial cell senescence mediates the pathogenesis of PQ-induced pulmonary fibrosis, thereby offering novel insights and potential targets for the clinical management of PQ poisoning as well as providing the mechanistic insight of the involvement of Yap/Taz activation in cell senescence in pulmonary fibrosis and its related pulmonary disorders. The YIN YANG balance between cell senescence and apoptosis is important to maintain the homeostasis of the lung, the disruption of which will lead to disease.


Subject(s)
Adaptor Proteins, Signal Transducing , Cellular Senescence , Mice, Inbred C57BL , Paraquat , Pulmonary Fibrosis , Transcription Factors , YAP-Signaling Proteins , Animals , Cellular Senescence/drug effects , Cellular Senescence/physiology , YAP-Signaling Proteins/metabolism , Humans , Mice , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Paraquat/toxicity , Male , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Trans-Activators/metabolism , Trans-Activators/genetics
3.
Am J Respir Cell Mol Biol ; 69(2): 159-171, 2023 08.
Article in English | MEDLINE | ID: mdl-37146099

ABSTRACT

Pulmonary hypertension (PH) is a devastating disease characterized by progressive increases in pulmonary vascular resistance and remodeling, which eventually leads to right ventricular failure and death. The aim of this study was to identify novel molecular mechanisms involved in the hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) in PH. In this study, we first demonstrated that the mRNA and protein expression amounts of QKI (Quaking), an RNA-binding protein, were elevated in human and rodent PH lung and pulmonary artery tissues and hypoxic human PASMCs. QKI deficiency attenuated PASMC proliferation in vitro and vascular remodeling in vivo. Next, we elucidated that QKI increases STAT3 (signal transducer and activator of transcription 3) mRNA stability by binding to its 3' untranslated region. QKI inhibition reduced STAT3 expression and alleviated PASMC proliferation in vitro. Moreover, we also observed that the upregulated expression of STAT3 promoted PASMC proliferation in vitro and in vivo. In addition, as a transcription factor, STAT3 bound to microRNA (miR)-146b promoter to enhance its expression. We further showed that miR-146b promoted the proliferation of smooth muscle cells by inhibiting STAT1 and TET2 (Tet methylcytosine dioxygenase 2) during pulmonary vascular remodeling. This study has demonstrated new mechanistic insights into hypoxic reprogramming that arouses vascular remodeling, thus providing proof of concept for targeting vascular remodeling by directly modulating the QKI-STAT3-miR-146b pathway in PH.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , Humans , Cell Proliferation , Cells, Cultured , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Vascular Remodeling/genetics
4.
Electrophoresis ; 44(15-16): 1187-1196, 2023 08.
Article in English | MEDLINE | ID: mdl-37183951

ABSTRACT

DNA-based ancestry inference has long been a research hot spot in forensic science. The differentiation of Han Chinese population, such as the northern-to-southern substructure, would benefit forensic practice. In the present study, we enrolled participants from northern and southern China, each participant was genotyped at ∼400 K single-nucleotide polymorphisms (SNPs) and data of CHB and CHS from 1000 Genomes Project were used to perform genome-wide association analyses. Meanwhile, a new method combining genome-wide association study (GWAS) analyses with k-fold cross-validation in a small sample size was introduced. As a result, one SNP rs17822931 emerged with a p-value of 7.51E - 6. We also simulated a huge dataset to verify whether k-fold cross-validation could reduce the false-negative rate of GWAS. The identified ABCC11 rs17822931 has been reported to have allele frequencies varied with the geographical gradient distribution in humans. We also found a great difference in the allele frequency distributions of rs17822931 among five different cohorts of the Chinese population. In conclusion, our study demonstrated that even small-scale GWAS can also have potential to identify effective loci with implemented k-fold cross-validation method and shed light on the potential maker of rs17822931 in differentiating the north-to-south substructure of the Han Chinese population.


Subject(s)
East Asian People , Genetics, Population , Genome-Wide Association Study , Humans , China , East Asian People/genetics , Gene Frequency , Genotype , Polymorphism, Single Nucleotide
5.
Am J Respir Cell Mol Biol ; 67(1): 61-75, 2022 07.
Article in English | MEDLINE | ID: mdl-35507777

ABSTRACT

Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have been evaluated in many studies as promising therapeutic agents for pulmonary hypertension (PH). However, low yields and heterogeneity are major barriers in the translational utility of EVs for clinical studies. To address these limitations, we fabricated MSC-derived nanovesicles (MSC-NVs) by serial extrusion through filters, resulting in MSC-NVs with characteristics similar to conventional EVs but with much higher production yields. Herein, we examined the therapeutic efficacy of MSC-NVs in preclinical models of PH in vitro and in vivo. Intervention with MSC-NVs improved the core pathologies of monocrotaline-induced PH in rats. Intravenous administration of MSC-NVs resulted in significant uptake within hypertensive lungs, pulmonary artery lesions, and especially pulmonary artery smooth muscle cells (PASMCs). In vitro, MSC-NVs inhibited PDGF-induced proliferation, migration, and phenotype switching of PASMCs. miRNA-sequencing analysis of the genetic cargo of MSC-NVs revealed that miR-125b-5p and miR-100-5p are highly abundant, suggesting that they might account for the therapeutic effects of MSC-NVs in PH. Depletion of miR-125b-5p and miR-100-5p in MSCs almost completely abolished the beneficial effects of MSC-NVs in protecting PASMCs from PDGF-stimulated changes in vitro and also diminished the protective effects of MSC-NVs in monocrotaline-induced PH in vivo. These data highlight the efficacy and advantages of MSC-NVs over MSC-EVs as a promising therapeutic strategy against PH.


Subject(s)
Extracellular Vesicles , Hypertension, Pulmonary , Mesenchymal Stem Cells , MicroRNAs , Animals , Disease Models, Animal , MicroRNAs/genetics , Monocrotaline , Rats
6.
Plant Physiol ; 187(4): 2192-2208, 2021 12 04.
Article in English | MEDLINE | ID: mdl-33624820

ABSTRACT

Dense vesicles (DVs) are Golgi-derived plant-specific carriers that mediate post-Golgi transport of seed storage proteins in angiosperms. How this process is regulated remains elusive. Here, we report a rice (Oryza sativa) mutant, named glutelin precursor accumulation8 (gpa8) that abnormally accumulates 57-kDa proglutelins in the mature endosperm. Cytological analyses of the gpa8 mutant revealed that proglutelin-containing DVs were mistargeted to the apoplast forming electron-dense aggregates and paramural bodies in developing endosperm cells. Differing from previously reported gpa mutants with post-Golgi trafficking defects, the gpa8 mutant showed bent Golgi bodies, defective trans-Golgi network (TGN), and enlarged DVs, suggesting a specific role of GPA8 in DV biogenesis. We demonstrated that GPA8 encodes a subunit E isoform 1 of vacuolar H+-ATPase (OsVHA-E1) that mainly localizes to TGN and the tonoplast. Further analysis revealed that the luminal pH of the TGN and vacuole is dramatically increased in the gpa8 mutant. Moreover, the colocalization of GPA1 and GPA3 with TGN marker protein in gpa8 protoplasts was obviously decreased. Our data indicated that OsVHA-E1 is involved in endomembrane luminal pH homeostasis, as well as maintenance of Golgi morphology and TGN required for DV biogenesis and subsequent protein trafficking in rice endosperm cells.


Subject(s)
Glutens/metabolism , Oryza/genetics , Oryza/metabolism , Protein Isoforms/metabolism , Protein Transport/physiology , Seeds/metabolism , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism , China , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Glutens/genetics , Mutation , Protein Isoforms/genetics , Seeds/genetics , Vesicular Transport Proteins/genetics
7.
Am J Respir Crit Care Med ; 203(9): 1158-1172, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33465322

ABSTRACT

Rationale: Posttranscriptional modifications are implicated in vascular remodeling of pulmonary hypertension (PH). m6A (N6-methyladenosine) is an abundant RNA modification that is involved in various biological processes. Whether m6A RNA modification and m6A effector proteins play a role in pulmonary vascular remodeling and PH has not been demonstrated.Objectives: To determine whether m6A modification and m6A effectors contribute to the pathogenesis of PH.Methods: m6A modification and YTHDF1 expression were measured in human and experimental PH samples. RNA immunoprecipitation analysis and m6A sequencing were employed to screen m6A-marked transcripts. Genetic approaches were employed to assess the respective roles of YTHDF1 and MAGED1 in PH. Primary cell isolation and cultivation were used for function analysis of pulmonary artery smooth muscle cells (PASMCs).Measurements and Main Results: Elevated m6A levels and increased YTHDF1 protein expression were found in human and rodent PH samples as well as in hypoxic PASMCs. The deletion of YTHDF1 ameliorated PASMC proliferation, phenotype switch, and PH development both in vivo and in vitro. m6A RNA immunoprecipitation analysis identified MAGED1 as an m6A-regulated gene in PH, and genetic ablation of MAGED1 improved vascular remodeling and hemodynamic parameters in SU5416/hypoxia mice. YTHDF1 recognized and promoted translation of MAGED1 in an m6A-dependent manner that was absent in METTL3-deficient PASMCs. In addition, MAGED1 silencing inhibited hypoxia-induced proliferation of PASMCs through downregulating PCNA.Conclusions: YTHDF1 promotes PASMC proliferation and PH by enhancing MAGED1 translation. This study identifies the m6A RNA modification as a novel mediator of pathological changes in PASMCs and PH.


Subject(s)
Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Neoplasm Proteins/metabolism , RNA-Binding Proteins/metabolism , Vascular Remodeling/physiology , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Cell Culture Techniques , Cell Proliferation , Disease Models, Animal , Humans , Hypertension, Pulmonary/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle , Pulmonary Artery/metabolism , Pulmonary Artery/pathology
8.
Int J Clin Pract ; 2022: 2637581, 2022.
Article in English | MEDLINE | ID: mdl-36567775

ABSTRACT

Background: To explore clinical features and prognostic value of vascular endothelial growth factor (VEGF), interleukin (IL) 8, IL-10, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and receptor-interacting protein-2 (RIP2) in diffuse large B-cell lymphoma (DLBCL). Methods: A total of 68 DLBCL patients admitted to the Affiliated Hospital of Hebei Engineering University from January 2017 to June 2021 were included in this retrospective analysis. Serum VEGF was detected by enzyme-linked immunosorbent assay, serum IL-8 and IL-10 were detected by chemiluminescent enzyme immunoassay, and expression of PIK3CA and RIP2 in tumors was detected by immunohistochemistry. The correlation between clinical features of DLBCL and tumor-related index were analyzed. Cox regression was conducted to explore risk factors and hazard ratio. Results: The serum level or expressions of VEGF, IL-8, IL-10, and RIP2 were significantly elevated with the increase of Ann Arbor Stage, International Prognostic Index (IPI) scores, Eastern Cooperative Oncology Group (ECOG) scores, serum lactate dehydrogenase (LDH) level, and the number of extranodal sites (all P < 0.05). Beside, these serum indexes were significantly higher in patients with the presence of extranodal involvement and germinal center B-cell (GCB), but significantly lower in patients with the presence of bone marrow involvement (all P < 0.05). Cox regression analysis for overall survival revealed that high expression of VEGF, high level of serum IL-8, serum IL-10, and RIP2, Ann Arbor Stage (III-IV), number of extranodal sites (>1), serum LDH level (≥245 U/L), IPI scores (3-5), ECOG scores (≥2), and bone marrow involvement were independent risk factors for the prognosis of DLBCL patients (all P < 0.05). Conclusion: The serum levels of VEGF, IL-8, and IL-10, as well as the expression of RIP2 and PIK3CA in tumor tissues, were highly correlated to clinical features of DLBCL, and high expression level of these indexes may have adverse effects for the prognosis of DLBCL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Class I Phosphatidylinositol 3-Kinases , Interleukin-10/metabolism , Interleukin-8/metabolism , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/metabolism , Prognosis , Retrospective Studies , Vascular Endothelial Growth Factor A
9.
Can J Infect Dis Med Microbiol ; 2022: 7588033, 2022.
Article in English | MEDLINE | ID: mdl-35386470

ABSTRACT

Mycobacterium tuberculosis antimicrobial resistance has been continually reported and is a major public health issue worldwide. Rapid prediction of drug resistance is important for selecting appropriate antibiotic treatments, which significantly increases cure rates. Gene sequencing technology has proven to be a powerful strategy for identifying relevant drug resistance information. This study established a sequencing method and bioinformatics pipeline for resistance gene analysis using an Oxford Nanopore Technologies sequencer. The pipeline was validated by Sanger sequencing and exhibited 100% concordance with the identified variants. Turnaround time for the nanopore sequencing workflow was approximately 12 h, facilitating drug resistance prediction several weeks earlier than that of traditional phenotype drug susceptibility testing. This study produced a customized gene panel assay for rapid bacterial identification via nanopore sequencing, which improves the timeliness of tuberculosis diagnoses and provides a reliable method that may have clinical application.

10.
Eur J Clin Invest ; 51(1): e13443, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33131070

ABSTRACT

BACKGROUND: To reveal detailed histopathological changes, virus distributions, immunologic properties and multi-omic features caused by SARS-CoV-2 in the explanted lungs from the world's first successful lung transplantation of a COVID-19 patient. MATERIALS AND METHODS: A total of 36 samples were collected from the lungs. Histopathological features and virus distribution were observed by optical microscope and transmission electron microscope (TEM). Immune cells were detected by flow cytometry and immunohistochemistry. Transcriptome and proteome approaches were used to investigate main biological processes involved in COVID-19-associated pulmonary fibrosis. RESULTS: The histopathological changes of the lung tissues were characterized by extensive pulmonary interstitial fibrosis and haemorrhage. Viral particles were observed in the cytoplasm of macrophages. CD3+ CD4- T cells, neutrophils, NK cells, γ/δ T cells and monocytes, but not B cells, were abundant in the lungs. Higher levels of proinflammatory cytokines iNOS, IL-1ß and IL-6 were in the area of mild fibrosis. Multi-omics analyses revealed a total of 126 out of 20,356 significant different transcription and 114 out of 8,493 protein expression in lung samples with mild and severe fibrosis, most of which were related to fibrosis and inflammation. CONCLUSIONS: Our results provide novel insight that the significant neutrophil/ CD3+ CD4- T cell/ macrophage activation leads to cytokine storm and severe fibrosis in the lungs of COVID-19 patient and may contribute to a better understanding of COVID-19 pathogenesis.


Subject(s)
COVID-19/pathology , Hemorrhage/pathology , Lung Transplantation , Lung/pathology , Lymph Nodes/pathology , Pulmonary Fibrosis/pathology , B-Lymphocytes/pathology , B-Lymphocytes/ultrastructure , B-Lymphocytes/virology , COVID-19/genetics , COVID-19/metabolism , COVID-19/surgery , Chromatography, Liquid , Flow Cytometry , Gene Expression Profiling , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Killer Cells, Natural/pathology , Killer Cells, Natural/ultrastructure , Killer Cells, Natural/virology , Lung/metabolism , Lung/ultrastructure , Lung/virology , Lymph Nodes/metabolism , Lymph Nodes/ultrastructure , Lymph Nodes/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/ultrastructure , Macrophages, Alveolar/virology , Male , Middle Aged , Monocytes/pathology , Monocytes/ultrastructure , Monocytes/virology , Neutrophils/pathology , Neutrophils/ultrastructure , Neutrophils/virology , Nitric Oxide Synthase Type II/metabolism , Proteomics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/surgery , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/pathology , T-Lymphocytes/ultrastructure , T-Lymphocytes/virology , Tandem Mass Spectrometry
11.
BMC Pulm Med ; 21(1): 80, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33673825

ABSTRACT

OBJECTIVES: Pulmonary hypertension (PH) is a life-threatening progressive disease with high mortality in the elderly. However, the pathogenesis of PH has not been fully understood and there is no effective therapy to reverse the disease process. This study aims to determine whether cellular senescence is involved in the development of PH. METHODS: The rat PH model was established by intraperitoneal injection of monocrotaline and evaluated by pulmonary arteriole wall thickness and right ventricular hypertrophy index. Human lung fibroblasts (HLFs) were treated with CoCl2 or hypoxia to induce cellular senescence in vitro. SA-ß-gal staining and the changes of senescent markers were used to examine cellular senescence. The molecular mechanism of cellular senescence was further explored by detecting reactive oxygen species (ROS) levels and culturing cells with a conditioned medium. RESULTS: We revealed the cellular senescence of pulmonary adventitial fibroblasts in vivo in the rat PH model. The expression of Bmi-1, an important regulator of senescence, was decreased in the lungs of PH rats and localized in adventitial fibroblasts. The in vitro experiments showed that p16 expression was increased while Bmi-1 expression was decreased after CoCl2 treatment in HLFs. Mechanistically, Bmi-1 could alleviate CoCl2-induced HLFs senescence by eliminating ROS which further promoted the proliferation of pulmonary artery smooth muscle cells by paracrine mode of action of HLFs. CONCLUSION: Bmi-1 alleviates the cellular senescence of pulmonary fibroblasts in PH, which expands the pathogenesis of PH and provides a theoretical basis for targeting senescent cells in the treatment of PH.


Subject(s)
Adventitia/metabolism , Hypertension, Pulmonary/metabolism , Polycomb Repressive Complex 1/metabolism , Pulmonary Artery/metabolism , Reactive Oxygen Species/metabolism , Adventitia/pathology , Animals , Cell Line , Cell Proliferation , Cellular Senescence , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/metabolism , Hypoxia/complications , Male , Monocrotaline/administration & dosage , Polycomb Repressive Complex 1/genetics , Pulmonary Artery/physiopathology , Rats , Rats, Sprague-Dawley , Signal Transduction
12.
Environ Toxicol ; 35(12): 1343-1351, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32686902

ABSTRACT

As a traditional plant medicine in tropical areas, Swietenia macrophylla seeds are usually applied for some chronic diseases, including hypertension, diabetes, and so on. Few studies have been carried out to identify the effective elements in seed extract and their indications. In this study, we first investigated the functions of the swietenine, an extract from S. macrophylla seeds, using a model of myocardial hypertrophy induced by isoprenaline (ISO). At cellular level, H9c2 cell hypertrophy was also established through the treatment with ISO. The cardiac pathological remodeling was evaluated by echocardiography and histological analysis. Western blot and RT-qPCR were used to detect the expression of possible hypertrophy-promoting genes. Here, our results indicated that swietenine remarkably attenuated ISO-induced myocardial hypertrophy in vivo and in vitro. Moreover, Akt phosphorylation, ANP and BNP mRNA expression were efficiently decreased. Based on these findings, we concluded that swietenine might be a promising anti-hypertrophic agent against cardiac hypertrophy.


Subject(s)
Cardiomegaly/prevention & control , Heart/drug effects , Limonins/pharmacology , Meliaceae/chemistry , Plant Extracts/pharmacology , Animals , Cardiomegaly/chemically induced , Cell Enlargement/drug effects , Cell Line , Cell Survival/drug effects , Isoproterenol/adverse effects , Limonins/isolation & purification , Male , Mice , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Organ Size/drug effects , Plant Extracts/isolation & purification , Rats , Seeds/chemistry
13.
BMC Plant Biol ; 19(1): 295, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31277576

ABSTRACT

BACKGROUND: As the major storage protein in rice seeds, glutelins are synthesized at the endoplasmic reticulum (ER) as proglutelins and transported to protein storage vacuoles (PSVs) called PBIIs (Protein body IIs), where they are cleaved into mature forms by the vacuolar processing enzymes. However, the molecular mechanisms underlying glutelin trafficking are largely unknown. RESULTS: In this study, we report a rice mutant, named glutelin precursor accumulation6 (gpa6), which abnormally accumulates massive proglutelins. Cytological analyses revealed that in gpa6 endosperm cells, proglutelins were mis-sorted, leading to the presence of dense vesicles (DVs) and the formation paramural bodies (PMBs) at the apoplast, consequently, smaller PBII were observed. Mutated gene in gpa6 was found to encode a Na+/H+ antiporter, OsNHX5. OsNHX5 is expressed in all tissues analyzed, and its expression level is much higher than its closest paralog OsNHX6. The OsNHX5 protein colocalizes to the Golgi, the trans-Golgi network (TGN) and the pre-vacuolar compartment (PVC) in tobacco leaf epidermal cells. In vivo pH measurements indicated that the lumens of Golgi, TGN and PVC became more acidic in gpa6. CONCLUSIONS: Our results demonstrated an important role of OsNHX5 in regulating endomembrane luminal pH, which is essential for seed storage protein trafficking in rice.


Subject(s)
Glutens/metabolism , Homeostasis , Oryza/metabolism , Endosperm/metabolism , Golgi Apparatus/physiology , Hydrogen-Ion Concentration , Protein Transport , Vacuoles/metabolism
14.
Plant Cell Rep ; 37(12): 1667-1679, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30151559

ABSTRACT

KEY MESSAGE: Loss of function of a mitochondrial complex I subunit (OsNDUFA9) causes abnormal embryo development and affects starch synthesis by altering the expression of starch synthesis-related genes and proteins. Proton-pumping NADH: ubiquinone oxidoreductase (also called complex I) is thought to be the largest and most complicated enzyme of the mitochondrial respiratory chain. Mutations of complex I subunits have been revealed to link with a number of growth inhibitions in plants. However, the function of complex I subunits in rice remains unclear. Here, we isolated a rice floury endosperm mutant (named flo13) that was embryonic lethal and failed to germinate. Semi-thin sectioning analysis showed that compound starch grain development in the mutant was greatly impaired, leading to significantly compromised starch biosynthesis and decreased 1000-grain weight relative to the wild type. Map-based cloning revealed that FLO13 encodes an accessory subunit of complex I protein (designated as OsNDUFA9). A single nucleotide substitution (G18A) occurred in the first exon of OsNDUFA9, introducing a premature stop codon in the flo13 mutant gene. OsNDUFA9 was ubiquitously expressed in various tissues and the OsNDUFA9 protein was localized to the mitochondria. Quantitative RT-PCR and protein blotting indicated loss of function of OsNDUFA9 altered gene expression and protein accumulation associated with respiratory electron chain complex in the mitochondria. Moreover, transmission electron microscopic analysis showed that the mutant lacked obvious mitochondrial cristae structure in the mitochondria of endosperm cell. Our results demonstrate that the OsNDUFA9 subunit of complex I is essential for embryo development and starch synthesis in rice endosperm.


Subject(s)
Electron Transport Complex I/metabolism , Oryza/embryology , Oryza/metabolism , Plant Proteins/metabolism , Protein Subunits/metabolism , Seeds/embryology , Seeds/metabolism , Starch/biosynthesis , Base Sequence , Cloning, Molecular , Endosperm/cytology , Endosperm/metabolism , Endosperm/ultrastructure , Gene Expression Regulation, Plant , Mitochondria/metabolism , Mitochondria/ultrastructure , Mutation/genetics , Oryza/ultrastructure , Phenotype , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Subcellular Fractions/metabolism
15.
BMC Pulm Med ; 18(1): 158, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30290780

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a rare disease characterized by proliferation and occlusion of small pulmonary arterioles, which has been associated with a high mortality rate. The pathogenesis of PH is complex and incompletely understood, which includes both genetic and environmental factors that alter vascular structure and function. METHODS: Thus we aimed to reveal the potential genetic etiology of PH by targeting 143 tag SNPs of 14 candidate genes. Totally 208 individuals from Chinese Han population were enrolled in the present study, including 109 non-idiopathic PH patients and 99 healthy controls. RESULTS: The data revealed that 2 SNPs were associated with PH overall susceptibility at p < 3×10- 4 after Bonferroni correction. The top hit was rs6557421 (p = 4.5×10- 9), located within Nox3 gene on chromosome 6. Another SNP rs3744439 located in Tbx4 gene, also showed evidence of association with PH susceptibility (p = 1.2×10- 6). The distribution of genotype frequencies of rs6557421 and rs3744439 have dramatic differences between PH patients and controls. Individuals with rs6557421 TT genotype had a 10.72-fold/14.20-fold increased risk to develop PH when compared with GG or GG/GT carriers in codominant or recessive model, respectively (TT versus GG: 95%CI = 4.79-24.00; TT versus GG/GT: 95%CI = 6.65-30.33). As for rs3744439, AG genotype only occurred in healthy controls but has not been observed in PH patients. We further validated the result by using 26 different populations from five regions around the globe, including African (AFR), American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS). In consistent with the present case-control study's results, significantly different genotype frequencies of the observed SNPs existed between PH patients and healthy individuals from all over the world. CONCLUSIONS: The results suggested that rs6557421 variant in Nox3 and rs3744439 variant in Tbx4 might have potential effect on individual susceptibility to pulmonary hypertension, which could lead to therapeutic or diagnosis approaches in PH.


Subject(s)
Asian People/genetics , Genome-Wide Association Study , Hypertension, Pulmonary/genetics , NADPH Oxidases/genetics , T-Box Domain Proteins/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , China , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
16.
Mol Pharm ; 14(12): 4539-4550, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29058910

ABSTRACT

Currently, the most prominent barrier to the success of orally delivered paclitaxel (PTX) is the extremely limited bioavailability of delivered therapeutic. In light of this issue, an amphiphilic sulfhydrylated N-deoxycholic acid-N,O-hydroxyethyl chitosan (TGA-DHC) was synthesized to improve the oral bioavailability of PTX. First, TGA-DHC demonstrated substantial loading of PTX into the inner hydrophobic core. A desirable enhancement in the bioavailability of PTX by TGA-DHC was verified by pharmacokinetic studies on rats against Taxol and non-sulfhydrylated DHC micelles. Moreover, cellular uptake studies revealed significant accumulation of TGA-DHC micelles encapsulating PTX or rhodamine-123 into Caco-2 cells via clathrin/caveolae-mediated endocytosis and inhibition of P-gp efflux of substrates. The results of the Caco-2 transport study further confirmed the mechanistic basis of TGA-DHC efficacy; which was attributed to permeabilized tight junctions, clathrin-mediated transcytosis across the endothelium, and inhibition of P-gp. Finally, in vitro mucoadhesion investigations on freshly excised rat intestine intuitively confirmed increased intestinal retention of drug-loaded TGA-DHC through thiol-mediated mucoadhesion. TGA-DHC has demonstrated the capability to overcome what is perhaps the most prominent barrier to oral PTX efficacy, low bioavailability, and serves as a prominent platform for oral delivery of P-gp substrates.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Micelles , Paclitaxel/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Cell Membrane Permeability , Chitosan/chemistry , Deoxycholic Acid/chemistry , Fluorescent Dyes/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Intestinal Absorption/drug effects , Models, Animal , Permeability , Rats , Rhodamine 123/pharmacology , Sulfhydryl Compounds/chemistry , Tight Junctions/metabolism
17.
Aust Orthod J ; 32(2): 148-154, 2016 Nov.
Article in English | MEDLINE | ID: mdl-29509339

ABSTRACT

BACKGROUND: A Class Il malocclusion is the most frequent sagittal skeletal disharmony presenting for orthodontic treatment. A transverse interarch discrepancy ITID) may be considered as a possible functional cause of a Class 11 relationship. OBJECTIVE: The purpose of the present study was to determine transverse interarch width dimensions before and after orthodontic therapy and their possible relationship with increased mandibular projection following treatment. METHODS: The sample included 40 adolescent patients who were divided into two groups, one possessing and one without a transverse discrepancy. Interarch width differences (including ICWD, IPWD, IMWD, IAWD) were measured before and after treatment, and Pogonion (Pog) to Nasion (NJ perpendicular was similarly measured in each group. RESULTS: The differences in arch and alveolar width dimensions between the two groups (including ICWD, IPWDI, IPWDII, IMWD, IAWD) before treatment were statistically significant (p < 0.05). A comparison of Pog to N perpendicular between the two groups showed that mandibular protrusion after treatment in the transverse discrepancy group was 2.6 ± 1.3 mm, while mandibular protrusion after treatment in the group without a transverse discrepancy was 0.6 ±0.3 mm. The statistical comparison showed that the differences were significant (p < 0.01). CONCLUSION: A transverse interarch discrepancy may have a functional relationship with mandible retrusion. If a transverse discrepancy is corrected via orthodontic treatment, the mandible may spontaneously protrude.


Subject(s)
Malocclusion, Angle Class II/therapy , Mandible/pathology , Orthodontics, Corrective/methods , Adolescent , Cephalometry , Child , Female , Humans , Male , Orthodontics, Corrective/instrumentation , Treatment Outcome
18.
Electrophoresis ; 36(14): 1633-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25820688

ABSTRACT

Previous studies have demonstrated that a large sample size is needed to reliably estimate population- and locus-specific microsatellite mutation rates. Therefore, we conducted a long-term collaboration study and performed a comprehensive analysis on the mutation characteristics of 19 autosomal short tandem repeat (STR) loci. The STR loci located on 15 of 22 autosomal chromosomes were analyzed in a total of 21,106 samples (11,468 parent-child meioses) in a Chinese population. This provided 217,892 allele transfers at 19 STR loci. An overall mutation rate of 1.20 × 10(-3) (95% CI, 1.06-1.36 × 10(-3) ) was observed in the populations across 18 of 19 STR loci, except for the TH01 locus with no mutation found. Most STR mutations (97.7%) were single-step mutations, and only a few mutations (2.30%) comprised two and multiple steps. Interestingly, approximately 93% of mutation events occur in the male germline. The mutation ratios increased with the paternal age at child birth (r = 0.99, p<0.05), but not maternal age. Last, with the combination analysis of the data from the southern Chinese population, we drew a picture of 19 STR mutations in China. In conclusion, the data from this study will provide useful information in parentage testing, kinship analysis, and population genetics.


Subject(s)
Microsatellite Repeats , Mutation Rate , Paternity , Adolescent , Adult , Aged , Asian People/genetics , Child , China , DNA Mutational Analysis , Female , Genetic Loci , Genetics, Population , Humans , Male , Middle Aged , Tandem Repeat Sequences , Young Adult
20.
J Orofac Orthop ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913160

ABSTRACT

PURPOSE: The purpose of this cross-sectional study was to use multiple regression analysis to evaluate the relationship between the mandibular curve of Spee (COS) and the maxillary compensating curve with dentoskeletal morphology in young Chinese adults with normal occlusion. METHODS: This study comprised 62 young adults (31 males, mean age: 24.1 ± 2.2 years; 31 females, mean age: 23.3 ± 3.3 years) with Angle class I normal occlusion. For every subject, intraoral scan models of the maxillary and mandibular arches and lateral cephalograms were acquired. The depth of the COS and compensating curve were assessed on the intraoral scan models. Multiple dental arch dimensional and cephalometric variables were screened by univariate analysis. Subsequently, a multiple linear regression model (forward stepwise selection) was constructed to determine which variables were significantly correlated with the two curve depths. RESULTS: In the mandible, the COS depth was deepest at the mesiobuccal cusp of the first molar. Overjet, mandibular arch width and mandibular-occlusal plane angle significantly correlated with the COS depth (P < 0.05), accounting for 33.1% of the variation in the mandibular COS. In the maxilla, the deepest point of the compensating curve was at the distobuccal cusp of the first molar. Mandibular arch perimeter and overbite significantly correlated with the maxillary compensating curve (P < 0.05), explaining 23.3% of the variation. CONCLUSIONS: Overjet, overbite, mandibular-occlusal plane angle, mandibular arch width and perimeter should be considered when reconstructing occlusal curves in clinical orthodontic treatment and in prosthetic restoration.

SELECTION OF CITATIONS
SEARCH DETAIL