Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.094
Filter
Add more filters

Publication year range
1.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: mdl-33727703

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
2.
Proc Natl Acad Sci U S A ; 121(14): e2318391121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527207

ABSTRACT

The exploitation of novel wound healing methods with real-time infection sensing and high spatiotemporal precision is highly important for human health. Pt-based metal-organic cycles/cages (MOCs) have been employed as multifunctional antibacterial agents due to their superior Pt-related therapeutic efficiency, various functional subunits and specific geometries. However, how to rationally apply these nanoscale MOCs on the macroscale with controllable therapeutic output is still challenging. Here, a centimeter-scale Pt MOC film was constructed via multistage assembly and subsequently coated on a N,N'-dimethylated dipyridinium thiazolo[5,4-d]thiazole (MPT)-stained silk fabric to form a smart wound dressing for bacterial sensing and wound healing. The MPT on silk fabric could be used to monitor wound infection in real-time through the bacteria-mediated reduction of MPT to its radical form via a color change. The MPT radical also exhibited an excellent photothermal effect under 660 nm light irradiation, which could not only be applied for photothermal therapy but also induce the disassembly of the Pt MOC film suprastructure. The highly ordered Pt MOC film suprastructure exhibited high biosafety, while it also showed improved antibacterial efficiency after thermally induced disassembly. In vitro and in vivo studies revealed that the combination of the Pt MOC film and MPT-stained silk can provide real-time information on wound infection for timely treatment through noninvasive techniques. This study paves the way for bacterial sensing and wound healing with centimeter-scale metal-organic materials.


Subject(s)
Platinum , Wound Infection , Humans , Platinum/pharmacology , Wound Healing , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silk/chemistry , Bacteria , Hydrogels/pharmacology
3.
Development ; 149(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36178098

ABSTRACT

Recent large-scale mRNA sequencing has shown that introns are retained in 5-10% of mRNA, and these events are named intron retention (IR). IR has been recognized as a key mechanism in the regulation of gene expression. However, the role of this mechanism in female reproduction in mammals remains unclear. RNA terminal phosphate cyclase B (RTCB) is a RNA ligase; we found that RTCB conditional knockout mice have premature ovarian failure and that RTCB plays a crucial role in follicular development. RTCB regulated the splicing of transcripts related to DNA methylation and DNA damage repair. In addition, it regulated the resumption of oocyte meiosis by affecting CDK1 activation. Moreover, the loss of RTCB suppressed zygotic genome activation (ZGA) and decreased translation at the global level. In addition, Rtcb deletion resulted in the accumulation of maternal mRNAs containing unspliced introns and in a decline in the overall level of transcripts. As a result, the Rtcb-/- females were sterile. Our study highlights the important role of RTCB-regulated noncanonical alternative splicing in female reproduction.


Subject(s)
Alternative Splicing , Amino Acyl-tRNA Synthetases/metabolism , Phosphates , Alternative Splicing/genetics , Animals , Female , Ligases/genetics , Mammals/genetics , Mice , Oocytes , RNA Splicing , RNA, Messenger/genetics
4.
Nucleic Acids Res ; 51(21): 11927-11940, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37870446

ABSTRACT

In various autoimmune diseases, dysfunctional TREX1 (Three prime Repair Exonuclease 1) leads to accumulation of endogenous single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and DNA/RNA hybrids in the cytoplasm and triggers immune activation through the cGAS-STING pathway. Although inhibition of TREX1 could be a useful strategy for cancer immunotherapy, profiling cellular functions in terms of its potential substrates is a key step. Particularly important is the functionality of processing DNA/RNA hybrids and RNA substrates. The exonuclease activity measurements conducted here establish that TREX1 can digest both ssRNA and DNA/RNA hybrids but not dsRNA. The newly solved structures of TREX1-RNA product and TREX1-nucleotide complexes show that 2'-OH does not impose steric hindrance or specific interactions for the recognition of RNA. Through all-atom molecular dynamics simulations, we illustrate that the 2'-OH-mediated intra-chain hydrogen bonding in RNA would affect the binding with TREX1 and thereby reduce the exonuclease activity. This notion of higher conformational rigidity in RNA leading TREX1 to exhibit weaker catalytic cleavage is further validated by the binding affinity measurements with various synthetic DNA-RNA junctions. The results of this work thus provide new insights into the mechanism by which TREX1 processes RNA and DNA/RNA hybrids and contribute to the molecular-level understanding of the complex cellular functions of TREX1 as an exonuclease.


Subject(s)
DNA , RNA , DNA/genetics , DNA/metabolism , DNA, Single-Stranded/genetics , Exodeoxyribonucleases/metabolism , Phosphoproteins/metabolism , RNA/genetics , Animals , Mice
5.
J Cell Biochem ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860522

ABSTRACT

The importance of protein kinase B (AKT) in tumorigenesis and development is well established, but its potential regulation of metabolic reprogramming via phosphorylation of the hexokinase (HK) isozymes remains unclear. There are two HK family members (HK1/2) and three AKT family members (AKT1/2/3), with varied distribution of AKTs exhibiting distinct functions in different tissues and cell types. Although AKT is known to phosphorylate HK2 at threonine 473, AKT-mediated phosphorylation of HK1 has not been reported. We examined direct binding and phosphorylation of HK1/2 by AKT1 and identified the phosphorylation modification sites using coimmunoprecipitation, glutathione pull-down, western blotting, and in vitro kinase assays. Regulation of HK activity through phosphorylation by AKT1 was also examined. Uptake of 2-[1,2-3H]-deoxyglucose and production of lactate were investigated to determine whether AKT1 regulates glucose metabolism by phosphorylating HK1/2. Functional assays, immunohistochemistry, and tumor experiments in mice were performed to investigate whether AKT1-mediated regulation of tumor development is dependent on its kinase activity and/or the involvement of HK1/2. AKT interacted with and phosphorylated HK1 and HK2. Serine phosphorylation significantly increased AKT kinase activity, thereby enhancing glycolysis. Mechanistically, the phosphorylation of HK1 at serine 178 (S178) by AKT significantly decreased the Km and enhanced the Vmax by interfering with the formation of HK1 dimers. Mutations in the AKT phosphorylation sites of HK1 or HK2 significantly abrogated the stimulatory characteristics of AKT on glycolysis, tumorigenesis, and cell migration, invasion, proliferation, and metastasis. HK1-S178 phosphorylation levels were significantly correlated with the occurrence and metastasis of different types of clinical tumors. We conclude that AKT not only regulates tumor glucose metabolism by directly phosphorylating HK1 and HK2, but also plays important roles in tumor progression, proliferation, and migration.

6.
Small ; 20(2): e2305670, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658521

ABSTRACT

N-type Mg3 Sb2 -based thermoelectric materials show great promise in power generation due to their mechanical robustness, low cost of Mg, and high figure of merit (ZT) over a wide range of temperatures. However, their poor thermal stability hinders their practical applications. Here, MgB2 is introduced to improve the thermal stability of n-type Mg3 Sb2 . Enabled by MgB2 decomposition, extra Mg can be released into the matrix for Mg compensation thermodynamically, and secondary phases of Mg─B compounds can kinetically prevent Mg diffusion along grain boundaries. These synergetic effects inhibit the formation of Mg vacancies at elevated temperatures, thereby enhancing the thermal stability of n-type Mg3 Sb2 . Consequently, the Mg3.05 (Sb0.75 Bi0.25 )1.99 Te0.01 (MgB2 )0.03 sample exhibits negligible variation in thermoelectric performance during the 120-hour continuous measurement at 673 K. Moreover, the ZT of n-type Mg3 Sb2 can be maintained by adding MgB2 , reaching a high average ZT of ≈1.1 within 300-723 K. An eight-pair Mg3 Sb2 -GeTe-based thermoelectric device is also fabricated, achieving an energy conversion efficiency of ≈5.7% at a temperature difference of 438 K with good thermal stability. This work paves a new way to enhance the long-term thermal stability of n-type Mg3 Sb2 -based alloys and other thermoelectrics for practical applications.

7.
J Med Virol ; 96(5): e29647, 2024 May.
Article in English | MEDLINE | ID: mdl-38708790

ABSTRACT

Invasive pulmonary aspergillosis (IPA) is a life-threatening complication in patients with severe fever with thrombocytopenia syndrome (SFTS), yet SFTS-associated IPA (SAPA)'s risk factors remain undefined. A multicenter retrospective cohort study across Hubei and Anhui provinces (May 2013-September 2022) utilized least absolute shrinkage and selection operator (LASSO) regression for variable selection. Multivariable logistic regression identified independent predictors of SAPA, Cox regression highlighted mortality-related risk factors. Of the 1775 screened SFTS patients, 1650 were included, with 169 developing IPA, leading to a 42-day mortality rate of 26.6% among SAPA patients. Multivariable logistic regression revealed SAPA risk factors including advanced age, petechia, hemoptysis, tremor, low albumin levels, elongated activated partial thromboplastin time (APTT), intensive care unit (ICU) admission, glucocorticoid usage, intravenous immunoglobulin (IVIG) and prolonged hospital stays. Cox regression identified predictors of 42-day mortality, including ecchymosis at venipuncture sites, absence of ICU admission, elongated prothrombin time (PT), vasopressor and glucocorticoid use, non-antifungals. Nomograms constructed on these predictors registered concordance indexes of 0.855 (95% CI: 0.826-0.884) and 0.778 (95% CI: 0.702-0.854) for SAPA onset and 42-day mortality, respectively. Lower survival rates for SAPA patients treated with glucocorticoids (p < 0.001) and improved 14-day survival with antifungal therapy (p = 0.036). Improving IPA management in SFTS-endemic areas is crucial, with effective predictive tool.


Subject(s)
Invasive Pulmonary Aspergillosis , Severe Fever with Thrombocytopenia Syndrome , Humans , Retrospective Studies , Male , Female , Middle Aged , Risk Factors , Invasive Pulmonary Aspergillosis/mortality , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/drug therapy , Severe Fever with Thrombocytopenia Syndrome/complications , Aged , China/epidemiology , Adult
8.
Ann Surg Oncol ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762645

ABSTRACT

BACKGROUND: Cough is a common symptom that affects patients' recovery and quality of life after esophagectomy. This study sought to investigate trends in postoperative cough and the factors that influence cough. METHODS: A total of 208 of 225 patients were enrolled in this study. The Mandarin Chinese version of the Leicester Cough Questionnaire was administered the day before surgery and at three time points (1 week, 1 month, and 3 months) after esophagectomy to assess patient-reported outcomes. RESULTS: All patients' LCQ-MC scores after surgery were lower than presurgery (P < 0.05), with the lowest score found 1 week after esophagectomy. Factors associated with a cough 1 week after surgery included clinical stage of cancer (OR 0.782, 95% CI 0.647-0.944, P = 0.011), anastomotic position (OR 1.241, 95% CI 1.069-1.441, P = 0.005), duration of surgery (OR 0.759, 95% CI 0.577-0.998, P = 0.049), and subcarinal lymph node dissection (OR 0.682, 95% CI 0.563-0.825, P < 0.001). Factors associated with a cough one month after surgery included clinical stage (OR 0.782, 95% CI 0.650-0.940, P = 0.009), anastomotic position (OR 1.293, 95% CI 1.113-1.503, P = 0.001), and maintaining a semi-reclining position (OR 1.440, 95% CI 1.175-1.766, P < 0.001). Factors associated with a cough 3 months after surgery were clinical stage (OR 0.741, 95% CI 0.591-0.928, P = 0.009) and anastomotic position (OR 1.220, 95% CI 1.037-1.435, P = 0.016). CONCLUSIONS: This study showed that the factors influencing postoperative cough differed over time following esophagectomy. These results may warrant prospective intervention to better manage patients undergoing surgery for esophageal cancer to prevent postoperative cough.

9.
Opt Express ; 32(2): 2179-2187, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297753

ABSTRACT

On-chip micro-ring resonators (MRRs) with low loss and large free spectral ranges (FSRs) are important for photonic devices. So far, ultra-low-loss silicon-nitride (Si3N4) waveguides are primarily fabricated in laboratories, as they often demand special processes to reduce transmission losses. While, Si3N4 waveguides fabricated by the standard multi-project wafer (MPW)-based processes often suffer from significant sidewall scattering, resulting in high scattering losses. Here, we present an innovative approach to photonics by introducing a compact and multi-mode structure. This approach significantly reduces the contact between the optical field and the rough sidewalls in the high-confinement Si3N4 waveguide. By incorporating modified Euler bends, and a weakly tapered gap directional coupler, adiabatic transmission with simultaneous ultra-low loss and compact size is achieved even in 7-µm wide waveguide. Results show that the intrinsic quality factor Qi of MRR is (6.8 ± 0.4) × 106 at the wavelength of 1550 nm, which is approximately four times higher than the previously reported by the same fabrication process. An ultra-low loss of 0.051 ± 0.003 dB/cm is achieved based on the standard LIGENTEC-AN800 technology. This accomplishment addresses a critical challenge in high-confinement waveguides. Our work provides new insights into the low propagation loss in Si3N4 waveguides and provides a broader prospect for integrated photonics in the ultra-high-Q regime.

10.
BMC Cancer ; 24(1): 404, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561648

ABSTRACT

BACKGROUND: Accurate microsatellite instability (MSI) testing is essential for identifying gastric cancer (GC) patients eligible for immunotherapy. We aimed to develop and validate a CT-based radiomics signature to predict MSI and immunotherapy outcomes in GC. METHODS: This retrospective multicohort study included a total of 457 GC patients from two independent medical centers in China and The Cancer Imaging Archive (TCIA) databases. The primary cohort (n = 201, center 1, 2017-2022), was used for signature development via Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression analysis. Two independent immunotherapy cohorts, one from center 1 (n = 184, 2018-2021) and another from center 2 (n = 43, 2020-2021), were utilized to assess the signature's association with immunotherapy response and survival. Diagnostic efficiency was evaluated using the area under the receiver operating characteristic curve (AUC), and survival outcomes were analyzed via the Kaplan-Meier method. The TCIA cohort (n = 29) was included to evaluate the immune infiltration landscape of the radiomics signature subgroups using both CT images and mRNA sequencing data. RESULTS: Nine radiomics features were identified for signature development, exhibiting excellent discriminative performance in both the training (AUC: 0.851, 95%CI: 0.782, 0.919) and validation cohorts (AUC: 0.816, 95%CI: 0.706, 0.926). The radscore, calculated using the signature, demonstrated strong predictive abilities for objective response in immunotherapy cohorts (AUC: 0.734, 95%CI: 0.662, 0.806; AUC: 0.724, 95%CI: 0.572, 0.877). Additionally, the radscore showed a significant association with PFS and OS, with GC patients with a low radscore experiencing a significant survival benefit from immunotherapy. Immune infiltration analysis revealed significantly higher levels of CD8 + T cells, activated CD4 + B cells, and TNFRSF18 expression in the low radscore group, while the high radscore group exhibited higher levels of T cells regulatory and HHLA2 expression. CONCLUSION: This study developed a robust radiomics signature with the potential to serve as a non-invasive biomarker for GC's MSI status and immunotherapy response, demonstrating notable links to post-immunotherapy PFS and OS. Additionally, distinct immune profiles were observed between low and high radscore groups, highlighting their potential clinical implications.


Subject(s)
Radiomics , Stomach Neoplasms , Humans , Cohort Studies , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Retrospective Studies , Microsatellite Instability , Immunotherapy , Tomography, X-Ray Computed , Immunoglobulins
11.
Eur Radiol ; 34(2): 1280-1291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37589900

ABSTRACT

OBJECTIVES: To develop a CT-based radiomics model for preoperative prediction of lymph node (LN) metastasis in perihilar cholangiocarcinoma (pCCA). METHODS: The study enrolled consecutive pCCA patients from three independent Chinese medical centers. The Boruta algorithm was applied to build the radiomics signature for the primary tumor and LN. The k-means algorithm was employed to cluster the selected LNs based on the radiomics signature LN. Support vector machines were used to construct the prediction models. The diagnostic efficiency was measured by the area under the receiver operating characteristic curve (AUC). The optimal model was evaluated in terms of calibration, clinical usefulness, and prognostic value. RESULTS: A total of 214 patients were included in the study (mean age: 61.6 years ± 9.4; 130 male). The selected LNs were classified into two clusters, which were significantly correlated with LN metastasis in all cohorts (p < 0.001). The model incorporated the clinical risk factors, radiomics signature primary tumor, and the LN cluster obtained the best discrimination, with AUC values of 0.981 (95% CI: 0.962-1), 0.896 (95% CI: 0.810-0.982), and 0.865 (95% CI: 0.768-0.961) in the training, internal validation, and external validation cohorts, respectively. High-risk patients predicted by the optimal model had shorter overall survival than low-risk patients (median, 13.7 vs. 27.3 months, p < 0.001). CONCLUSIONS: The study proposed a radiomics model with good performance to predict LN metastasis in pCCA. As a noninvasive preoperative prediction tool, this model may help in patient risk stratification and personalized treatment. CLINICAL RELEVANCE STATEMENT: A CT-based radiomics model accurately predicts lymph node metastasis in perihilar cholangiocarcinoma patients. This noninvasive preoperative tool can aid in patient risk stratification and personalized treatment, potentially improving patient outcomes. KEY POINTS: • The radiomics model based on contrast-enhanced CT is a useful tool for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma. • Radiomics features extracted from lymph nodes show great potential for predicting lymph node metastasis. • The study is the first to identify a lymph node phenotype with a high probability of metastasis based on radiomics.


Subject(s)
Bile Duct Neoplasms , Klatskin Tumor , Humans , Male , Middle Aged , Lymphatic Metastasis/pathology , Klatskin Tumor/diagnostic imaging , Klatskin Tumor/surgery , Radiomics , Retrospective Studies , Tomography, X-Ray Computed/methods , Lymph Nodes/pathology , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology
12.
J Cardiovasc Pharmacol ; 83(1): 93-104, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37816196

ABSTRACT

ABSTRACT: Aldehyde dehydrogenase 2 (ALDH2) protects the ischemic heart by activating adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling. However, the molecular mechanisms linking ALDH2 and AMPK signaling are not fully understood. This study aimed to explore the potential mechanisms linking ALDH2 and AMPK in myocardial ischemic injury. An ischemic model was established by ligating the left anterior descending coronary artery in rats. The overexpression or knockdown of ALDH2 in H9c2 cells treated with oxygen-glucose deprivation was obtained through lentivirus infection. Transferase-mediated dUTP nick-end labeling was used to evaluate apoptosis in an ischemic rat model and oxygen-glucose deprivation cells. ALDH2 activity, mitochondrial oxidative stress markers, adenosine triphosphate, respiratory control ratio, and cell viability in H9c2 cells were evaluated using a biological kit and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. Protein expression of ALDH2 , 4-hydroxynonenal, thioredoxin-1 (Trx-1), and AMPK-proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling pathway was detected through Western blotting. ALDH2 activation reduced ischemic-induced myocardial infarct size and apoptosis. ALDH2 protected mitochondrial function by enhancing mitochondrial respiratory control ratio and adenosine triphosphate production, alleviated mitochondrial oxidative stress, and suppressed myocardial apoptosis. Moreover, ALDH2 attenuated ischemia-induced oxidative stress and maintained Trx-1 levels by reducing 4-hydroxynonenal, thereby promoting AMPK-PGC-1α signaling activation. Inhibiting Trx-1 or AMPK abolished the cardioprotective effect of ALDH2 on ischemia. ALDH2 alleviates myocardial injury through increased mitochondrial biogenesis and reduced oxidative stress, and these effects were achieved through Trx1-mediating AMPK-PGC1-α signaling activation.


Subject(s)
AMP-Activated Protein Kinases , Myocardial Infarction , Animals , Rats , Adenosine Triphosphate/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/pharmacology , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Mitochondria , Myocardial Infarction/metabolism , Myocytes, Cardiac , Oxidation-Reduction , Oxygen/metabolism , Oxygen/pharmacology , AMP-Activated Protein Kinase Kinases/metabolism
13.
J Chem Inf Model ; 64(8): 3400-3410, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38537611

ABSTRACT

Lactobacillus kefir alcohol dehydrogenase (LkADH) and ketoreductase from Chryseobacterium sp. CA49 (ChKRED12) exhibit different chemoselectivity and stereoselectivity toward a substrate with both keto and aldehyde carbonyl groups. LkADH selectively reduces the keto carbonyl group while retaining the aldehyde carbonyl group, producing optically pure R-alcohols. In contrast, ChKRED12 selectively reduces the aldehyde group and exhibits low reactivity toward ketone carbonyls. This study investigated the structural basis for these differences and the role of specific residues in the active site. Molecular dynamics (MD) simulations and quantum chemical calculations were used to investigate the interactions between the substrate and the enzymes and the essential cause of this phenomenon. The present study has revealed that LkADH and ChKRED12 exhibit significant differences in the structure of their respective active pockets, which is a crucial determinant of their distinct chemoselectivity toward the same substrate. Moreover, residues N89, N113, and E144 within LkADH as well as Q151 and D190 within ChKRED12 have been identified as key contributors to substrate stabilization within the active pocket through electrostatic interactions and van der Waals forces, followed by hydride transfer utilizing the coenzyme NADPH. Furthermore, the enantioselectivity mechanism of LkADH has been elucidated using quantum chemical methods. Overall, these findings not only provide fundamental insights into the underlying reasons for the observed differences in selectivity but also offer a detailed mechanistic understanding of the catalytic reaction.


Subject(s)
Aldehydes , Ketones , Molecular Dynamics Simulation , Ketones/chemistry , Ketones/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Substrate Specificity , Quantum Theory , Lactobacillus/enzymology , Lactobacillus/metabolism , Catalytic Domain , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry
14.
BMC Infect Dis ; 24(1): 200, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355468

ABSTRACT

BACKGROUND: A lack of health resources is a common problem after the outbreak of infectious diseases, and resource optimization is an important means to solve the lack of prevention and control capacity caused by resource constraints. This study systematically evaluated the similarities and differences in the application of coronavirus disease (COVID-19) resource allocation models and analyzed the effects of different optimal resource allocations on epidemic control. METHODS: A systematic literature search was conducted of CNKI, WanFang, VIP, CBD, PubMed, Web of Science, Scopus and Embase for articles published from January 1, 2019, through November 23, 2023. Two reviewers independently evaluated the quality of the included studies, extracted and cross-checked the data. Moreover, publication bias and sensitivity analysis were evaluated. RESULTS: A total of 22 articles were included for systematic review; in the application of optimal allocation models, 59.09% of the studies used propagation dynamics models to simulate the allocation of various resources, and some scholars also used mathematical optimization functions (36.36%) and machine learning algorithms (31.82%) to solve the problem of resource allocation; the results of the systematic review show that differential equation modeling was more considered when testing resources optimization, the optimization function or machine learning algorithm were mostly used to optimize the bed resources; the meta-analysis results showed that the epidemic trend was obviously effectively controlled through the optimal allocation of resources, and the average control efficiency was 0.38(95%CI 0.25-0.51); Subgroup analysis revealed that the average control efficiency from high to low was health specialists 0.48(95%CI 0.37-0.59), vaccines 0.47(95%CI 0.11-0.82), testing 0.38(95%CI 0.19-0.57), personal protective equipment (PPE) 0.38(95%CI 0.06-0.70), beds 0.34(95%CI 0.14-0.53), medicines and equipment for treatment 0.32(95%CI 0.12-0.51); Funnel plots and Egger's test showed no publication bias, and sensitivity analysis suggested robust results. CONCLUSION: When the data are insufficient and the simulation time is short, the researchers mostly use the constructor for research; When the data are relatively sufficient and the simulation time is long, researchers choose differential equations or machine learning algorithms for research. In addition, our study showed that control efficiency is an important indicator to evaluate the effectiveness of epidemic prevention and control. Through the optimization of medical staff and vaccine allocation, greater prevention and control effects can be achieved.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , Personal Protective Equipment , SARS-CoV-2 , Disease Outbreaks
15.
Mol Ther ; 31(1): 154-173, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36068919

ABSTRACT

Impairment of innate immune cell function and metabolism underlies immunosuppression in sepsis; however, a promising therapy to orchestrate this impairment is currently lacking. In this study, high levels of NOD-like receptor family CARD domain containing-3 (NLRC3) correlated with the glycolytic defects of monocytes/macrophages from septic patients and mice that developed immunosuppression. Myeloid-specific NLRC3 deletion improved macrophage glycolysis and sepsis-induced immunosuppression. Mechanistically, NLRC3 inhibits nuclear factor (NF)-κB p65 binding to nuclear factor of activated T cells 5 (NFAT5), which further controls the expression of glycolytic genes and proinflammatory cytokines of immunosuppressive macrophages. This is achieved by decreasing NF-κB activation-co-induced by TNF-receptor-associated factor 6 (TRAF6) or mammalian target of rapamycin (mTOR)-and decreasing transcriptional co-activator p300 activity by inducing NLRC3 sequestration of mTOR and p300. Genetic inhibition of NLRC3 disrupted the NLRC3-mTOR-p300 complex and enhanced NF-κB binding to the NFAT5 promoter in concert with p300. Furthermore, intrapulmonary delivery of recombinant adeno-associated virus harboring a macrophage-specific NLRC3 deletion vector significantly improved the defense of septic mice that developed immunosuppression upon secondary intratracheal bacterial challenge. Collectively, these findings indicate that NLRC3 mediates critical aspects of innate immunity that contribute to an immunocompromised state during sepsis and identify potential therapeutic targets.


Subject(s)
Immune Tolerance , Intercellular Signaling Peptides and Proteins , Macrophages , NF-kappa B , Sepsis , Transcription Factors , Animals , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Macrophages/immunology , NF-kappa B/metabolism , Sepsis/immunology , Sepsis/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Immunocompromised Host
16.
Int J Med Sci ; 21(5): 784-794, 2024.
Article in English | MEDLINE | ID: mdl-38617006

ABSTRACT

Introduction: Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder with clinical features of retinal dystrophy, obesity, postaxial polydactyly, renal anomalies, learning disabilities, hypogonadism, and genitourinary abnormalities. Nevertheless, previous studies on the phenotypic traits of BBS heterozygous carriers have generated inconclusive results. The aim of our study was to investigate the impact of BBS heterozygosity on carriers when compared to non-carriers within the Taiwanese population. Materials and Methods: This study follows a hospital-based case-control design. We employed the Taiwan Biobank version 2 (TWBv2) array to identify three specific loci associated with BBS (rs773862084, rs567573386, and rs199910690). In total, 716 patients were included in the case group, and they were compared to a control group of 2,864 patients who lacked BBS alleles. The control group was selected through gender and age matching at a ratio of 1:4. The association between BBS-related loci and comorbidity was assessed using logistic regression models. Results: We found that BBS heterozygous carriers exhibited a significant association with elevated BMI levels, especially the variant rs199910690 in MKS1 (p=0.0037). The prevalence of comorbidities in the carriers' group was not higher than that in the non-carriers' group. Besides, the average values of the biochemistry data showed no significant differences, except for creatinine level. Furthermore, we conducted a BMI-based analysis to identify specific risk factors for chronic kidney disease (CKD). Our findings revealed that individuals carrying the CA/AA genotype of the BBS2 rs773862084 variant or the CT/TT genotype of the MKS1 rs199910690 variant showed a reduced risk of developing CKD, irrespective of their BMI levels. When stratified by BMI level, obese males with the MKS1 rs199910690 variant and obese females with the BBS2 rs773862084 variant exhibited a negative association with CKD development. Conclusion: We found that aside from the association with overweight and obesity, heterozygous BBS mutations did not appear to increase the predisposition of individuals to comorbidities and metabolic diseases. To gain a more comprehensive understanding of the genetic susceptibility associated with Bardet-Biedl Syndrome (BBS), further research is warranted.


Subject(s)
Bardet-Biedl Syndrome , Renal Insufficiency, Chronic , Female , Male , Humans , Bardet-Biedl Syndrome/epidemiology , Bardet-Biedl Syndrome/genetics , Comorbidity , Heterozygote , Obesity/epidemiology , Obesity/genetics , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics
17.
J Nanobiotechnology ; 22(1): 330, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862987

ABSTRACT

The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.


Subject(s)
Cryopreservation , Ovary , Cryopreservation/methods , Female , Humans , Animals
18.
Arch Pharm (Weinheim) ; 357(4): e2300540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38217306

ABSTRACT

A series of new febrifugine derivatives with a 4(3H)-quinazolinone scaffold were synthesized and evaluated for their anticoccidial activity both in vitro and in vivo. The targets' in vitro activity against Eimeria tenella was studied using quantitative real-time reverse transcription polymerase chain reaction and Madin-Darby bovine kidney cells. Most of these compounds demonstrated anticoccidial efficacy, with inhibition ratios ranging from 3.3% to 85.7%. Specifically, compounds 33 and 34 showed significant inhibitory effects on the proliferation of E. tenella and exhibited lower cytotoxicity compared to febrifugine. The IC50 values of compounds 33 and 34 were 3.48 and 1.79 µM, respectively, while the CC50 values were >100 µM for both compounds. Furthermore, in a study involving 14-day-old chickens infected with 5 × 104 sporulated oocysts, treatment with five selected compounds (22, 24, 28, 33, and 34), which exhibited in vitro inhibition rate of over 50% at 100 µM, at a dose of 40 mg/kg in daily feed for 8 consecutive days showed that compound 34 possessed moderate in vivo activity against coccidiosis, with an anticoccidial index of 164. Structure-activity relationship studies suggested that spirocyclic piperidine may be a preferable substructure to maintain high effectiveness in inhibiting Eimeria spp., when the side chain 1-(3-hydroxypiperidin-2-yl)propan-2-one was replaced.


Subject(s)
Coccidiosis , Coccidiostats , Poultry Diseases , Quinazolines , Animals , Cattle , Coccidiostats/pharmacology , Coccidiostats/chemistry , Coccidiostats/therapeutic use , Chickens , Structure-Activity Relationship , Coccidiosis/drug therapy , Coccidiosis/veterinary , Piperidines/pharmacology , Poultry Diseases/drug therapy
19.
Article in English | MEDLINE | ID: mdl-38199248

ABSTRACT

This study examined the effect of combining visual and olfactory cues to attract oriental fruit flies (OFFs). Six different colored light-emitting diodes (LEDs) served as a visual attractant and methyl eugenol served as olfactory bait to lure male flies. An internet of things (IoT)-based pest monitoring system, consisting of sensor nodes, a gateway, and automatic counting traps, was deployed in the field to automatically collect environmental data and pest counts. The results of the calibrated experiments indicated that green, yellow, or red LEDs exhibited better performance in attracting flies than white, purple, or blue LEDs or no LEDs. With an accurate combination of visual and olfactory cues, the proposed IoT-based pest monitoring system may be an effective tool in agricultural pest management, given its advantages for efficiently capturing OFFs in a labor and time saving manner, providing accurate information regarding increases in pest populations, and enabling long-term, real-time data collection.


Subject(s)
Internet of Things , Tephritidae , Male , Animals , Cues , Agriculture
20.
J Formos Med Assoc ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519322

ABSTRACT

Biological disasters pose a growing challenge in the 21st century, significantly impacting global society. Taiwan has experienced such disasters, resulting in long-term consequences like loss of life, trauma, economic decline, and societal disruptions. Post-disaster, mental health issues such as fear, anxiety, depression, post-traumatic stress disorder (PTSD), and stress surge, accompanied by increased suicide rates. The Coronavirus disease 2019 (COVID-19) (also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) pandemic, recognized as a biological disaster, triggered lockdowns and quarantines in Taiwan, causing lifestyle changes, economic recession, and so on. These shifts may elevate uncertainty about the future, intensifying mental stress and leading to a rise in various mental illnesses. This article reviews mental health studies conducted in Taiwan during the pandemic, emphasizing the need to integrate this research for future preparedness and interventions regarding the mental health impacts of biological disasters, including COVID-19. Further research is essential to explore long-term effects, interventions, and generalizability.

SELECTION OF CITATIONS
SEARCH DETAIL