Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Fish Shellfish Immunol ; 151: 109736, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950760

ABSTRACT

RIPK1/TAK1 are important for programmed cell death, including liver death, necroptosis and apoptosis. However, there have been few published reports on the functions of RIPK1/TAK1 in invertebrates. In this study, full-length ChRIPK1 and ChTAK1 were cloned from C. hongkongensis through the rapid amplification of cDNA ends (RACE) technology. ChRIPK1 has almost no homology with human RIPK1 and lacks a kinase domain at the N-terminus but has a DD and RHIM domain. ChTAK1 is conserved throughout evolution. qRT‒PCR was used to analyze the mRNA expression patterns of ChRIPK1 in different tissues, developmental stages, and V. coralliilyticus-infected individuals, and both were highly expressed in the mantle and gills, while ChRIPK1 was upregulated in hemocytes and gills after V. coralliilyticus or S. aureus infection, which indicates that ChRIPK1 is involved in immune regulation. Fluorescence assays revealed that ChRIPK1 localized to the cytoplasm of HEK293T cells in a punctiform manner, but the colocalization of ChRIPK1 with ChTAK1 abolished the punctiform morphology. In the dual-luciferase reporter assay, both ChRIPK1 and ChRIPK1-RIHM activated the NF-κB signaling pathway in HEK293T cells, and ChTAK1 activated ChRIPK1 in the NF-κB signaling pathway. The apoptosis rate of the hemocytes was not affected by the necroptosis inhibitor Nec-1 but was significantly decreased, and ChRIPK1 expression was knocked down in the hemocytes of C. hongkongensis. These findings indicated that ChRIPK1 induces apoptosis but not necroptosis in oysters. This study provides a theoretical basis for further research on the molecular mechanism by which invertebrates regulate the programmed cell death of hemocytes in oysters.

3.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891762

ABSTRACT

The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.


Subject(s)
Bivalvia , Spermatogenesis , Testis , Transcription Factors , Animals , Spermatogenesis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Testis/metabolism , Testis/growth & development , Bivalvia/genetics , Bivalvia/metabolism , Bivalvia/growth & development , Gene Expression Regulation, Developmental , Gonads/metabolism , Gonads/growth & development , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/metabolism , Cloning, Molecular , Phylogeny , Amino Acid Sequence
4.
Ecotoxicol Environ Saf ; 266: 115551, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37832484

ABSTRACT

The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.


Subject(s)
Diptera , Manure , Animals , Larva/genetics , Manure/analysis , Chickens/genetics , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Diptera/genetics , Bacteria , Drug Resistance, Microbial , Genes, Bacterial , Anti-Bacterial Agents/pharmacology
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108595

ABSTRACT

MicroRNA-146b-5p (miR-146b-5p) is up-regulated during and to suppress the inflammation process, although mechanisms involved in the action of miR-146b-5p have not been fully elucidated. This study examined the anti-inflammation effects of miR-146b-5p in lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). An increase in human miR-146b-5p (hsa-miR-146b-5p) expression following the mRNA expression of pro-inflammatory cytokines was observed in LPS-stimulated hDPCs. The expression of hsa-miR-146b-5p and pro-inflammatory cytokines was down-regulated by a nuclear factor-kappa B (NF-κB) inhibitor, and the expression of hsa-miR-146b-5p was also decreased by a JAK1/2 inhibitor. Enforced expression of hsa-miR-146b-5p abolished phosphorylation of NF-κB p65 and down-regulated the expression of pro-inflammatory cytokines and NF-κB signaling components, such as interleukin-1 receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6), and REL-associated protein involved in NF-κB (RELA). Expression of rat miR-146b-5p (rno-miR-146b-5p) and pro-inflammatory cytokine mRNA was also up-regulated in experimentally-induced rat pulpal inflammation in vivo, and rno-miR-146b-5p blocked the mRNA expression of pro-inflammatory mediators and NF-κB signaling components in LPS-stimulated ex vivo cultured rat incisor pulp tissues. These findings suggest that the synthesis of miR-146b-5p is controlled via an NF-κB/IL6/STAT3 signaling cascade, and in turn, miR-146b-5p down-regulates the expression of pro-inflammatory mediators by targeting TRAF6, IRAK1, and RELA in LPS-stimulated hDPCs.


Subject(s)
Lipopolysaccharides , MicroRNAs , Humans , Rats , Animals , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Dental Pulp/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
6.
J Environ Manage ; 348: 119156, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37837764

ABSTRACT

Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.


Subject(s)
Cellulases , Diptera , Animals , Larva , Manure , Chickens , Cellulose , Bacillus subtilis , Digestion
7.
Protein Expr Purif ; 192: 106032, 2022 04.
Article in English | MEDLINE | ID: mdl-34922007

ABSTRACT

Insect defensins are effector components of the innate defense system. Defensins, which are widely distributed among insects, are a type of small cysteine-rich plant antimicrobial peptides with broad-spectrum antimicrobial activity. Here, the cDNAs of the black soldier fly, Hermetia illucens (L.), encoding six defensins, designated herein as Hidefensin1-1, 2, 3, 4, 5, 6. Moreover, Hidefensin1-1, 2, and 5 were identified for the first time by genome-targeted analysis. These Hidefensins were found to mainly adopt α-helix and ß-sheet conformation homology as modeled by PRABI, Swiss-Model and ProFunc server. Six conserved cysteine residues that contribute to three disulfide bonds formed the spacing pattern "C-X12-C-X3-C-X9-C-X5-C-X-C", which play a vital role in the molecular stability of Hidefensins. Phylogenetic analysis revealed that the homology of five Hidefensins (except Hidefensin4) was about 59%-92% compared with other insect defensins, indicating that they are novel antimicrobial peptides genes in black soldier fly. Furthermore, the Hidefensin1-1 was expressed in the Escherichia coli strain BL21(DE3) as a fusion protein with thioredoxin. Results showed that the purified TRX-Hidefensin1-1 exerted strong inhibitory effects against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. The inhibitory efficacy of TRX-Hidefensin1-1 against Gram-positive bacteria was better than that against Gram-negative bacteria. These results indicated that Hidefensin1-1 has potent antimicrobial activities against test pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Defensins/chemistry , Defensins/pharmacology , Diptera/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Anti-Bacterial Agents/metabolism , Defensins/genetics , Defensins/metabolism , Diptera/chemistry , Diptera/classification , Diptera/genetics , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Phylogeny , Sequence Alignment
8.
Fish Shellfish Immunol ; 122: 495-500, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35202805

ABSTRACT

Serum amyloid protein (SAA) is known as an acute reactive protein of innate immunity in mammals. However, in invertebrates, the role of SAA in innate immunity is still unclear. In this study, a full-length cDNA of the SAA gene (named TcSAA) was cloned from Tridacna crocea, mollusca. The gene includes a 193 bp 5' untranslated region (UTR) and a 129 bp 3' UTR sequence, and the open reading frame (ORF) with 393 bp nucleotides encodes a polypeptide of 130 amino acids. TcSAA contains a typical signal peptide and an SAA functional domain. The mRNA expression of TcSAA was detected in all 12 selected tissues and 7 different developmental stages. Furthermore, the expression of TcSAA was increased quickly in hemocytes after challenge with V. coralliilyticus or LPS. Furthermore, rTcSAA could bind V. coralliilyticus and V. alginolyticus, and the protein could reduce the lethality rate of the clams from 80% to 55% which caused by V. coralliilyticus about 48 h after injection. In summary, these results indicate that TcSAA may act as a marker for monitoring health and protecting T. crocea.


Subject(s)
Perciformes , Amino Acid Sequence , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/metabolism , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Fish Proteins/genetics , Gene Expression Regulation , Immunity, Innate/genetics , Mammals/genetics , Mammals/metabolism , Phylogeny
9.
Glob Chang Biol ; 27(16): 3779-3797, 2021 08.
Article in English | MEDLINE | ID: mdl-33964098

ABSTRACT

Biomineralization is one of the key processes that is notably affected in marine calcifiers such as oysters under ocean acidification (OA). Understanding molecular changes in the biomineralization process under OA and its heritability, therefore, is key to developing conservation strategies for protecting ecologically and economically important oyster species. To do this, in this study, we have explicitly chosen the tissue involved in biomineralization (mantle) of an estuarine commercial oyster species, Crassostrea hongkongensis. The primary aim of this study is to understand the influence of DNA methylation over gene expression of mantle tissue under decreased ~pH 7.4, a proxy of OA, and to extrapolate if these molecular changes can be observed in the product of biomineralization-the shell. We grew early juvenile C. hongkongensis, under decreased ~pH 7.4 and control ~pH 8.0 over 4.5 months and studied OA-induced DNA methylation and gene expression patterns along with shell properties such as microstructure, crystal orientation and hardness. The population of oysters used in this study was found to be moderately resilient to OA at the end of the experiment. The expression of key biomineralization-related genes such as carbonic anhydrase and alkaline phosphatase remained unaffected; thus, the mechanical properties of the shell (shell growth rate, hardness and crystal orientation) were also maintained without any significant difference between control and OA conditions with signs of severe dissolution. In addition, this study makes three major conclusions: (1) higher expression of Ca2+ binding/signalling-related genes in the mantle plays a key role in maintaining biomineralization under OA; (2) DNA methylation changes occur in response to OA; however, these methylation changes do not directly control gene expression; and (3) OA would be more of a 'dissolution problem' rather than a 'biomineralization problem' for resilient species that maintain calcification rate with normal shell growth and mechanical properties.


Subject(s)
Biomineralization , Crassostrea , Animal Shells , Animals , Biomineralization/genetics , Carbon Dioxide , Crassostrea/genetics , Hydrogen-Ion Concentration , Oceans and Seas , Seawater
10.
Mar Drugs ; 19(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34436258

ABSTRACT

Antimicrobial peptides are a fundamental component of mollusks' defense systems, though they remain a thinly investigated subject. Here, infection by Vibrio parahemolyticus triggered a significant increase in antimicrobial activity in oyster plasma. By using PBS-challenged oysters as a control, plasma peptides from immunologically challenged oysters were subjected to peptidomic profiling and in silico data mining to identify bioactive peptides. Thirty-five identified plasma peptides were up-regulated post infection, among which, six up-regulated peptides (URPs) showed a relatively high positive charge. URP20 was validated with significant antibacterial activity. Virtually, URP20 triggered aggregation of bacterial cells, accompanied by their membrane permeabilization. Interestingly, URP20 was found to be active against Gram-positive and Gram-negative foodborne pathogens as well as Candida albicans, with no cytotoxicity to mammalian cells and mice. Our study provides the first large-scale plasma peptidomic dataset that identifies novel bioactive peptides in marine mollusks. Further exploration of peptide diversity in marine invertebrates should prove a fruitful pursuit for designing novel AMPs with broad applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/pharmacology , Crassostrea , Animals , Aquatic Organisms , Candida albicans/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects
11.
Plant Dis ; 105(8): 2169-2176, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33258435

ABSTRACT

Meloidogyne incognita causes large-scale losses of agricultural crops worldwide. The natural metabolite furfural acetone has been reported to attract and kill M. incognita, but whether the attractant and nematicidal activities of furfural acetone on M. incognita function simultaneously in the same system, especially in three-dimensional spaces or in soil, is still unknown. Here, we used 23% Pluronic F-127 gel and a soil simulation device to demonstrate that furfural acetone has a significant attract-and-kill effect on M. incognita in both three-dimensional model systems. At 24 h, the chemotaxis index and the corrected mortality of nematodes exposed to 60 mg/ml of furfural acetone in 23% Pluronic F-127 gel were as high as 0.82 and 74.44%, respectively. Soil simulation experiments in moist sand showed that at 48 h, the chemotaxis index and the corrected mortality of the nematode toward furfural acetone reached 0.63 and 82.12%, respectively, and the effect persisted in the presence of tomato plants. In choice experiments, nematodes selected furfural acetone over plant roots and were subsequently killed. In pot studies, furfural acetone had a control rate of 82.80% against M. incognita. Collectively, these results provide compelling evidence for further investigation of furfural acetone as a novel nematode control agent.


Subject(s)
Solanum lycopersicum , Tylenchoidea , Acetone , Animals , Antinematodal Agents/pharmacology , Furaldehyde
12.
Molecules ; 27(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35011333

ABSTRACT

Plant-parasitic nematodes cause severe losses to crop production and economies all over the world. Bacillus aryabhattai MCCC 1K02966, a deep-sea bacterium, was obtained from the Southwest Indian Ocean and showed nematicidal and fumigant activities against Meloidogyne incognita in vitro. The nematicidal volatile organic compounds (VOCs) from the fermentation broth of B. aryabhattai MCCC 1K02966 were investigated further using solid-phase microextraction gas chromatography-mass spectrometry. Four VOCs, namely, pentane, 1-butanol, methyl thioacetate, and dimethyl disulfide, were identified in the fermentation broth. Among these VOCs, methyl thioacetate exhibited multiple nematicidal activities, including contact nematicidal, fumigant, and repellent activities against M. incognita. Methyl thioacetate showed a significant contact nematicidal activity with 87.90% mortality at 0.01 mg/mL by 72 h, fumigant activity in mortality 91.10% at 1 mg/mL by 48 h, and repellent activity at 0.01-10 mg/mL. In addition, methyl thioacetate exhibited 80-100% egg-hatching inhibition on the 7th day over the range of 0.5 mg/mL to 5 mg/mL. These results showed that methyl thioacetate from MCCC 1K02966 control M. incognita with multiple nematicidal modes and can be used as a potential biological control agent.


Subject(s)
Bacillus/metabolism , Tylenchoidea/drug effects , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology , Animals , Antinematodal Agents/chemistry , Antinematodal Agents/pharmacology , Aquatic Organisms , Fermentation , Gas Chromatography-Mass Spectrometry , Parasitic Sensitivity Tests , Volatile Organic Compounds/analysis , Water Microbiology
13.
Proteomics ; 20(19-20): e2000167, 2020 10.
Article in English | MEDLINE | ID: mdl-32865869

ABSTRACT

Sperm proteins play vital roles in fertilization, but little is known about their identities in free-spawning marine invertebrates. Here, 286 sperm proteins are reported from the Hong Kong oyster Crassostrea hongkongensis using label-free and semi-quantitative proteomics. Proteins extracted from three sperm samples are separated by SDS-PAGE, analyzed by LC-MS/MS, and identified using Mascot. Functional classification of the sperm proteome reveals energy metabolism (33%), signaling and binding (23%), and protein synthesis and degradation (12%) as the top functional categories. Comparison of orthologous sperm proteins between C. hongkongensis, Crassostrea gigas, Mytilus edulis, and M. galloprovincialis suggests that energy metabolism (48%) is the most conserved functional group. Sequence alignment of the C. hongkongensis bindin, an acrosomal protein that binds the sperm and the egg, with those of three other Crassostrea species, reveals several conserved motifs. The study has enriched the data of invertebrate sperm proteins and may contribute to studies of mechanisms of fertilization in free-spawning invertebrates. The proteomic data are available in ProteomeXchange with the identifier PXD018255.


Subject(s)
Crassostrea , Proteome , Proteomics , Animals , Chromatography, Liquid , Male , Spermatozoa/physiology , Tandem Mass Spectrometry
14.
BMC Genomics ; 21(1): 872, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33287701

ABSTRACT

BACKGROUND: Gonad development and differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. However, the mechanisms underlying gonad development and gametogenesis remain unclear in Tridacna squamosa, a large-size bivalve of great ecological value. They are protandrous simultaneous hermaphrodites, with the male gonad maturing first, eventually followed by the female gonads. In this study, nine gonad libraries representing resting, male and hermaphrodite stages in T. squamosa were performed to identify the molecular mechanisms. RESULTS: Sixteen thousand four hundred ninety-one unigenes were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 5091 and 7328 unigenes were assigned to Gene Ontology categories and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database, respectively. A total of 4763 differentially expressed genes (DEGs) were identified by comparing male to resting gonads, consisting of 3499 which were comparatively upregulated in males and 1264 which were downregulated in males. Six hundred-ninteen DEGs between male and hermaphroditic gonads were identified, with 518 DEGs more strongly expressed in hermaphrodites and 101 more strongly expressed in males. GO (Gene Ontology) and KEGG pathway analyses revealed that various biological functions and processes, including functions related to the endocrine system, oocyte meiosis, carbon metabolism, and the cell cycle, were involved in regulating gonadal development and gametogenesis in T. squamosa. Testis-specific serine/threonine kinases 1 (TSSK1), TSSK4, TSSK5, Doublesex- and mab-3-related transcription factor 1 (DMRT1), SOX, Sperm surface protein 17 (SP17) and other genes were involved in male gonadal development in Tridacna squamosal. Both spermatogenesis- (TSSK4, spermatogenesis-associated protein 17, spermatogenesis-associated protein 8, sperm motility kinase X, SP17) and oogenesis-related genes (zona pellucida protein, Forkhead Box L2, Vitellogenin, Vitellogenin receptor, 5-hydroxytryptamine, 5-hydroxytryptamine receptor) were simultaneously highly expressed in the hermaphroditic gonad to maintain the hermaphroditism of T. squamosa. CONCLUSION: All these results from our study will facilitate better understanding of the molecular mechanisms underlying giant clam gonad development and gametogenesis, which can provided a base on obtaining excellent gametes during the seed production process for giant clams.


Subject(s)
Bivalvia , Sperm Motility , Animals , Female , Gametogenesis/genetics , Gene Expression Profiling , Gonads , Humans , Male , Transcriptome
15.
Fish Shellfish Immunol ; 98: 122-129, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31917320

ABSTRACT

Caspase 3 plays an important role in apoptotic pathways and contributes to maintaining the homeostasis of the immune system in organisms. The structure, functions, and characteristics of caspase 3 have been extensively investigated in many species, but the research is scarce when it comes to bivalves, particularly oysters. In this study, we identified and cloned a previously unknown caspase 3 gene, named ChCas 3, in C. hongkongensis. The full-length cDNA of ChCas 3 was 1562 bp and included a 175 bp 5'-untranslated region (UTR), a 141 bp 3'-UTR and a 1245 bp open reading frame (ORF) that encoded a polypeptide of 415 amino acids. Similar to caspase 3 in other species, ChCas 3 has a pro-domain, a conserved cysteine active site, a large p20 subunit and a small p10 subunit. Our findings demonstrated the expression of ChCas 3 in all the eight tissues via tissue-specific expression assays with the highest expression in haemocytes. ChCas 3 was confirmed to be expressed throughout the larval development stages, and fluorescence from pEGFP-N1-ChCas 3 was found to be distributed throughout the entire HEK293T cell. In addition, the relative expression of ChCas 3 significantly enhanced in hemocytes post bacterial stimulation, and overexpression of ChCas 3 led to upregulation of the transcriptional activity of NF-κB and p53 reporter genes in HEK293T cells, which indicated that it was involved in innate immune responses. Finally, the apoptosis rate of the haemocytes declined considerably compared with that of the control group after the expression of ChCas 3 was successfully silenced by dsRNA, corroborating its sentinel role in apoptosis. This study provides comprehensive underpinning evidences, affirming caspase 3 crucial role against bacterial infection and apoptosis in C. hongkongensis.


Subject(s)
Apoptosis/genetics , Caspase 3/genetics , Caspase 3/immunology , Crassostrea/genetics , Crassostrea/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Animals , HEK293 Cells , Hemocytes/metabolism , Humans
16.
J Environ Manage ; 260: 110066, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31941627

ABSTRACT

Currently, sustainable utilisation, including recycling and valorisation, is becoming increasingly relevant in environmental management. The wastes bioconversion by the black soldier fly larva (BSFL) has two potential advantages: the larvae can convert the carbon and nitrogen in the biomass waste, and improve the properties of the substrate to reduce the loss of gaseous carbon and nitrogen. In the present study, the conversion rate of carbon, nitrogen and the emissions of greenhouse gases and NH3 during BSFL bio-treatment of food waste were investigated under different pH conditions. The results showed that the pH of the raw materials is a pivotal parameter affecting the process. The average wet weight of harvested BSFL was 13.26-95.28 mg/larva, with about 1.95-13.41% and 5.40-18.93% of recycled carbon and nitrogen from substrate at a pH from 3.0 to 11.0, respectively. Furthermore, pH is adversely correlated with CO2 emissions, but positively with NH3 emissions. Cumulative CO2, NH3, CH4 and N2O emissions at pH ranging from 3.0 to 11.0 were 88.15-161.11 g kg-1, 0.15-1.68 g kg-1, 0.19-2.62 mg kg-1 and 0.02-1.65 mg kg-1, respectively. Compared with the values in open composting, BSFL bio-treatment of food waste could lead greenhouse gas (especially CH4 and N2O) and NH3 emissions to decrease. Therefore, a higher pH value of the substrate can increase the larval output and help the mitigation of greenhouse gas emissions.


Subject(s)
Greenhouse Gases , Refuse Disposal , Simuliidae , Animals , Carbon , Carbon Dioxide , Food , Methane , Nitrogen
17.
Molecules ; 25(3)2020 02 09.
Article in English | MEDLINE | ID: mdl-32050419

ABSTRACT

Root-knot nematode diseases cause severe yield and economic losses each year in global agricultural production. Virgibacillus dokdonensis MCCC 1A00493, a deep-sea bacterium, shows a significant nematicidal activity against Meloidogyne incognita in vitro. However, information about the active substances of V. dokdonensis MCCC 1A00493 is limited. In this study, volatile organic compounds (VOCs) from V. dokdonensis MCCC 1A00493 were isolated and analyzed through solid-phase microextraction and gas chromatography-mass spectrometry. Four VOCs, namely, acetaldehyde, dimethyl disulfide, ethylbenzene, and 2-butanone, were identified, and their nematicidal activities were evaluated. The four VOCs had a variety of active modes on M. incognita juveniles. Acetaldehyde had direct contact killing, fumigation, and attraction activities; dimethyl disulfide had direct contact killing and attraction activities; ethylbenzene had an attraction activity; and 2-butanone had a repellent activity. Only acetaldehyde had a fumigant activity to inhibit egg hatching. Combining this fumigant activity against eggs and juveniles could be an effective strategy to control the different developmental stages of M. incognita. The combination of direct contact and attraction activities could also establish trapping and killing strategies against root-knot nematodes. Considering all nematicidal modes or strategies, we could use V. dokdonensis MCCC 1A00493 to set up an integrated strategy to control root-knot nematodes.


Subject(s)
Antinematodal Agents/isolation & purification , Plant Diseases/prevention & control , Tylenchoidea/drug effects , Virgibacillus/chemistry , Volatile Organic Compounds/isolation & purification , Acetaldehyde/isolation & purification , Acetaldehyde/pharmacology , Animals , Antinematodal Agents/pharmacology , Aquatic Organisms , Benzene Derivatives/isolation & purification , Benzene Derivatives/pharmacology , Butanones/isolation & purification , Butanones/pharmacology , Chemotaxis/drug effects , Disulfides/isolation & purification , Disulfides/pharmacology , Gas Chromatography-Mass Spectrometry , Solanum lycopersicum/drug effects , Solanum lycopersicum/parasitology , Parasite Egg Count , Plant Diseases/parasitology , Plant Roots/drug effects , Plant Roots/parasitology , Solid Phase Microextraction , Tylenchoidea/growth & development , Volatile Organic Compounds/pharmacology
18.
Fish Shellfish Immunol ; 93: 416-427, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31374314

ABSTRACT

Phagocytosis is one of the fundamental cellular immune defense parameter that helps in the elimination of the invading pathogens in both vertebrates and invertebrates, which require plenty of energy for functioning. In the present study, we identified the critical energy regulator AMP-activated protein kinase (AMPK) in Crassostrea hongkongensis which is composed of three subunits, named ChAMPK-α, ChAMPK-ß, and ChAMPK-γ, and then analyzed the function of AMPK in regulating hemocyte phagocytosis. All the three ChAMPK subunits mRNA were detected to be expressed at various embryological stages, and also constitutively expressed in multiple tissues with high expression in gill and mantle. The phylogenetic tree showed that the three subunits of AMPK were correspondingly clustered with its orthologue branches. Furthermore Western Blot analysis revealed that the AMPK pharmacological inhibitors Compound C could effectively down-regulate the Thr172 phosphorylation level of AMPK-α, and the hemocyte phagocytosis was inhibited by Compound C (CC), which indicate its existence in the oyster. Our results showed that treatment of AMPK inhibitors significantly attenuated the capacity of hemocytes phagocytosis. Moreover, Compound C could also change the organization of actin cytoskeleton in the oyster hemocytes, demonstrating the crucial role of AMPK signaling in control of phagocytosis.


Subject(s)
AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/immunology , Crassostrea/genetics , Crassostrea/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , AMP-Activated Protein Kinases/chemistry , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Profiling , Hemocytes , Phagocytosis , Sequence Alignment , Signal Transduction
19.
J Environ Manage ; 237: 75-83, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30780056

ABSTRACT

Generation of insects' biomass from lignocellulose rich organic wastes is of significant challenges in reducing the environmental impact of wastes and in sustaining feed and food security. This research looked at the effects of lignocellulotic exogenous bacteria in the black soldier fly (BSF) organic waste conversion system for biomass production and lignocellulose biodegradation of dairy and chicken manures. Six exogenous bacteria were investigated for cellulolytic activity with carboxymethyl cellulose and found that these tested bacterial strains degrade the cellulose. In this study; a co-conversion process using Hermetia illucens larvae to convert the previously studied best mixing ratio of dairy manure (DM) and chicken manure (CHM) (2:3) and cellulose degrading bacteria was established to enhance the larval biomass production, waste reduction and manure nutrient degradation. BSF larvae assisted by MRO2 (R5) has the best outcome measures: survival rate (99.1%), development time (19.0 d), manure reduction rate (48.7%), bioconversion rate (10.8%), food conversion ratio (4.5), efficiency of conversion of ingestion (22.3), cellulose (72.9%), hemicellulose (68.5%), lignin (32.8%), and nutrient utilization (protein, 71.2% and fat, 67.8%). By analyzing the fiber structural changes by scanning electron microscopy and Fourier-transformed infrared spectroscopy (FT-IR), we assume that exogenous bacteria assist the BSF larvae that trigger lead to structural and chemical modification of fibers. We hypothesized that these surface and textural changes are beneficial to the associated gut bacteria, thereby helping to larval growth and reduce waste. The finding of the investigation showed that enhanced conversion of DM and CHM by BSF larvae assisted with lignocellulotic exogenous bacteria could play key role in the manure management.


Subject(s)
Simuliidae , Animals , Bacteria , Chickens , Larva , Manure , Spectroscopy, Fourier Transform Infrared
20.
Molecules ; 24(4)2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30791605

ABSTRACT

Pseudomonas putida MCCC 1A00316 was originally isolated from an Antarctic soil and has demonstrated potential nematicidal activity. Thus, it has promising applications for the biological control of Meloidogyne incognita. The larval mortality and egg-hatching inhibition rates of M. incognita will increase with the rising concentration of culture filtrates of P. putida MCCC 1A00316 and the duration of exposure. Thus, this study aimed to separate, purify, and identify nematicidal compounds from P. putida MCCC 1A00316 and to validate their anti-M. incognita activities. Compounds were purified through silica gel column chromatography and thin-layer chromatography combined with high-performance liquid chromatography (HPLC). Structural identification was conducted through liquid chromatography time-of-flight mass spectrometry, ¹H nuclear magnetic resonance (NMR) spectroscopy, 13C-NMR, and Marfey's method. The isolated compounds were identified as cyclo(l-Pro⁻l-Leu) on the basis of the results of the above analyses and previously reported data. The effects of various concentrations of cyclo(l-Pro⁻l-Leu) on the mortality rates of second-stage juveniles (J2) of M. incognita were investigated. Results showed that HPLC-purified cyclo(l-Pro⁻l-Leu) displayed nematicidal activities. The mortality rate of M. incognita J2 reached 84.3% after 72 h of exposure to 67.5 mg/L cyclo(l-Pro⁻l-Leu). The lowest egg-hatching rate (9.74%) was observed after 8 days of incubation with 2000 mg/L cyclo(l-Pro⁻l-Leu). An egg-hatching rate of 53.11% was obtained under the control treatment (sterile distilled water). However, cyclo(l-Pro⁻l-Leu) did not elicit chemotaxis activity to M. incognita. This is the first work to investigate the anti-M. incognita characteristics of cyclo(l-Pro⁻l-Leu).


Subject(s)
Antinematodal Agents/isolation & purification , Antinematodal Agents/pharmacology , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/pharmacology , Pseudomonas putida/metabolism , Soil Microbiology , Antarctic Regions , Chromatography, High Pressure Liquid , Fermentation , Parasitic Sensitivity Tests , Peptides, Cyclic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL