Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
Add more filters

Publication year range
1.
Nature ; 626(8001): 984-989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326619

ABSTRACT

Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics1 and as a means of revealing2,3 or even inducing4,5 broken symmetries. Emerging methods for light-based current control5-16 offer particularly promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometre spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science. Here we introduce vectorial optoelectronic metasurfaces in which ultrafast light pulses induce local directional charge flows around symmetry-broken plasmonic nanostructures, with tunable responses and arbitrary patterning down to subdiffractive nanometre scales. Local symmetries and vectorial currents are revealed by polarization-dependent and wavelength-sensitive electrical readout and terahertz (THz) emission, whereas spatially tailored global currents are demonstrated in the direct generation of elusive broadband THz vector beams17. We show that, in graphene, a detailed interplay between electrodynamic, thermodynamic and hydrodynamic degrees of freedom gives rise to rapidly evolving nanoscale driving forces and charge flows under the extremely spatially and temporally localized excitation. These results set the stage for versatile patterning and optical control over nanoscale currents in materials diagnostics, THz spectroscopies, nanomagnetism and ultrafast information processing.

2.
Oncologist ; 29(5): e635-e642, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38431781

ABSTRACT

BACKGROUND: Our previous work indicated that the addition of lobaplatin to combined therapy with taxane and anthracycline can improve the pathological complete response rate of neoadjuvant therapy for triple-negative breast cancer (TNBC) and lengthen long-term survival significantly, but the therapeutic markers of this regimen are unclear. METHODS: Eighty-three patients who met the inclusion criteria were included in this post hoc analysis. We analyzed the association between platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) before neoadjuvant chemotherapy with the efficacy and prognosis after treatment with docetaxel, epirubicin, and lobaplatin neoadjuvant chemotherapy regimen. χ2 test and Cox regression were used to analyze the association between PLR and NLR with total pathologic complete response (tpCR), as well as the association between PLR and NLR with event-free survival (EFS) and overall survival (OS), respectively. RESULTS: The tpCR rate in the PLR- group was 49.0% (25/51), which was significantly higher than that in the PLR+ group (25.0% [8/32], P = .032). The tpCR rate in the NLR- group was 49.1% (26/53), which was significantly higher than that in the NLR+ group (23.3% [7/30], P = .024). The tpCR rate of the PLR-NLR- (PLR- and NLR-) group was 53.7% (22/41), which was significantly higher than that of the PLR+/NLR+ (PLR+ or/and NLR+) group (26.1% [11/42]; P = .012). EFS and OS in the NLR+ group were significantly shorter than those in the NLR- group (P = .028 for EFS; P = .047 for OS). Patients in the PLR-NLR- group had a longer EFS than those in the PLR+/NLR+ group (P = .002). CONCLUSION: PLR and NLR could be used to predict the efficacy of neoadjuvant therapy with the taxane, anthracycline, and lobaplatin regimen for patients with TNBC, as patients who had lower PLR and NLR values had a higher tpCR rate and a better long-term prognosis.


Subject(s)
Cyclobutanes , Neoadjuvant Therapy , Organoplatinum Compounds , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/mortality , Female , Neoadjuvant Therapy/methods , Prognosis , Middle Aged , Cyclobutanes/pharmacology , Cyclobutanes/therapeutic use , Cyclobutanes/administration & dosage , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/pharmacology , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aged , Neutrophils/metabolism , Biomarkers, Tumor/blood , Lymphocytes/metabolism , Blood Platelets/pathology , Retrospective Studies
3.
BMC Med ; 22(1): 252, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886794

ABSTRACT

BACKGROUND: Previous studies have shown that the addition of platinum to neoadjuvant chemotherapy (NAC) improved outcomes for patients with triple-negative breast cancer (TNBC). However, no studies have assessed the efficacy and safety of the combination of taxane and lobaplatin. In this study, we conducted a randomized controlled phase II clinical study to compare the efficacy and safety of taxane combined with lobaplatin or anthracycline. METHODS: We randomly allocated patients with stage I-III TNBC into Arm A and Arm B. Arm A received six cycles of taxane combined with lobaplatin (TL). Arm B received six cycles of taxane combined with anthracycline and cyclophosphamide (TEC) or eight cycles of anthracycline combined with cyclophosphamide and sequential use of taxane (EC-T). Both Arms underwent surgery after NAC. The primary endpoint was the pathologic complete response (pCR). Secondary endpoints were event-free survival (EFS), overall survival (OS), and safety. RESULTS: A total of 103 patients (51 in Arm A and 52 in Arm B) were assessed. The pCR rate of Arm A was significantly higher than that of Arm B (41.2% vs. 21.2%, P = 0.028). Patients with positive lymph nodes and low neutrophil-to-lymphocyte ratio (NLR) benefited significantly more from Arm A than those with negative lymph nodes and high NLR (Pinteraction = 0.001, Pinteraction = 0.012, respectively). There was no significant difference in EFS (P = 0.895) or OS (P = 0.633) between the two arms. The prevalence of grade-3/4 anemia was higher in Arm A (P = 0.015), and the prevalence of grade-3/4 neutropenia was higher in Arm B (P = 0.044). CONCLUSIONS: Neoadjuvant taxane plus lobaplatin has shown better efficacy than taxane plus anthracycline, and both regimens have similar toxicity profiles. This trial may provide a reference for a better combination strategy of immunotherapy in NAC for TNBC in the future.


Subject(s)
Anthracyclines , Antineoplastic Combined Chemotherapy Protocols , Cyclobutanes , Neoadjuvant Therapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Female , Middle Aged , Neoadjuvant Therapy/methods , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cyclobutanes/administration & dosage , Cyclobutanes/therapeutic use , Anthracyclines/therapeutic use , Anthracyclines/administration & dosage , Aged , Taxoids/therapeutic use , Taxoids/administration & dosage , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/administration & dosage , Treatment Outcome , Cyclophosphamide/administration & dosage , Cyclophosphamide/therapeutic use , Bridged-Ring Compounds
4.
Trends Immunol ; 42(3): 209-227, 2021 03.
Article in English | MEDLINE | ID: mdl-33495077

ABSTRACT

V-domain Ig suppressor of T cell activation (VISTA) is a B7 family member that maintains T cell and myeloid quiescence and is a promising target for combination cancer immunotherapy. During inflammatory challenges, VISTA activity reprograms macrophages towards reduced production of proinflammatory cytokines and increased production of interleukin (IL)-10 and other anti-inflammatory mediators. The interaction of VISTA with its ligands is regulated by pH, and the acidic pH ~6.0 in the tumor microenvironment (TME) facilitates VISTA binding to P-selectin glycoprotein ligand 1 (PSGL-1). Targeting intratumoral pH might be a way to reduce the immunoinhibitory activity of the VISTA pathway and enhance antitumor immune responses. We review differences among VISTA therapeutics under development as candidate immunotherapies, focusing on VISTA binding partners and the unique structural features of this interaction.


Subject(s)
B7 Antigens , Neoplasms , Humans , Immunotherapy , Lymphocyte Activation , Neoplasms/therapy , T-Lymphocytes , Tumor Microenvironment
5.
Pediatr Surg Int ; 40(1): 38, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253735

ABSTRACT

PURPOSE: Hirschsprung's disease (HSCR) is the leading cause of neonatal functional intestinal obstruction, which has been identified in many familial cases. HSCR, a multifactorial disorder of enteric nervous system (ENS) development, is associated with at least 24 genes and seven chromosomal loci, with RET and EDNRB as its major genes. We present a genetic investigation of familial HSCR to clarify the genotype-phenotype relationship. METHODS: We performed whole exome sequencing (WES) on Illumina HiSeq X Ten platform to investigate genetic backgrounds of core family members, and identified the possibly harmful mutation genes. Mutation carriers and pedigree relatives were validated by Sanger sequencing for evaluating the gene penetrance. RESULTS: Four familial cases showed potential disease-relative variants in EDNRB and RET gene, accounting for all detection rate of 57.1%. Three familial cases exhibited strong pathogenic variants as frameshift or missense mutations in EDNRB gene. A novel c.367delinsTT mutation of EDNRB was identified in one family member. The other two EDNRB mutations, c.553G>A in family 2 and c.877delinsTT in family 5, have been reported in previous literatures. The penetrance of EDNRB variants was 33-50% according mutation carries. In family 6, the RET c.1858T>C (C620R) point mutation has previously been reported to cause HSCR, with 28.5% penetrance. CONCLUSION: We identified a novel EDNRB (deleted C and inserted TT) mutation in this study using WES. Heterozygote variations in EDNRB gene were significantly enriched in three families and RET mutations were identified in one family. EDNRB variants showed an overall higher incidence and penetrance than RET in southern Chinese families cases.


Subject(s)
Hirschsprung Disease , Intestinal Obstruction , Receptor, Endothelin B , Humans , Infant, Newborn , China/epidemiology , Hirschsprung Disease/genetics , Incidence , Mutation , Receptor, Endothelin B/genetics
6.
Nano Lett ; 23(10): 4399-4405, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37154560

ABSTRACT

Transition metal dichalcogenide heterostructures provide a versatile platform to explore electronic and excitonic phases. As the excitation density exceeds the critical Mott density, interlayer excitons are ionized into an electron-hole plasma phase. The transport of the highly non-equilibrium plasma is relevant for high-power optoelectronic devices but has not been carefully investigated previously. Here, we employ spatially resolved pump-probe microscopy to investigate the spatial-temporal dynamics of interlayer excitons and hot-plasma phase in a MoSe2/WSe2 twisted bilayer. At the excitation density of ∼1014 cm-2, well exceeding the Mott density, we find a surprisingly rapid initial expansion of hot plasma to a few microns away from the excitation source within ∼0.2 ps. Microscopic theory reveals that this rapid expansion is mainly driven by Fermi pressure and Coulomb repulsion, while the hot carrier effect has only a minor effect in the plasma phase.

7.
Oncologist ; 28(7): e534-e541, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37120151

ABSTRACT

HER2 signaling is activated in response to somatic HER2 mutations, which are often found in invasive lobular breast cancer (ILC) and are associated with poor prognosis. Tyrosine kinase inhibitors (TKIs) have demonstrated considerable antitumor activity in patients with HER2-mutated advanced breast cancer (BC). Further, several clinical trials have indicated that HER2-targeted antibody-drug conjugates (ADCs) exhibit promising efficacy in lung cancer with HER2 mutations, and the efficacy of ADCs against HER2-mutated BC is currently being evaluated. Several preclinical studies have demonstrated that the therapeutic efficacy of ADCs in HER2-mutated cancer can be enhanced by the addition of irreversible TKIs, but the potential of such a combined treatment regimen for the treatment of HER2-mutated BC has not been reported. Herein, we describe a case in which a patient with estrogen receptor-positive/HER2-negative metastatic ILC with 2 activating HER2 mutations (D769H and V777L) exhibited a significant and durable response to anti-HER2 treatment with pyrotinib (an irreversible TKI) in combination with ado-trastuzumab emtansine, which was administered after multiple lines of therapy that had resulted in disease progression. Further, based on the evidence from the present case, TKI plus ADC seems to be a promising combination anti-HER2 regimen for patients with HER2-negative/HER2-mutated advanced BC, although further rigorous studies are warranted to confirm these findings.


Subject(s)
Breast Neoplasms , Humans , Female , Ado-Trastuzumab Emtansine/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Trastuzumab/therapeutic use , Receptor, ErbB-2/therapeutic use , Mutation
8.
Plant Biotechnol J ; 21(6): 1286-1300, 2023 06.
Article in English | MEDLINE | ID: mdl-36952539

ABSTRACT

Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage ß-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.


Subject(s)
Hemiptera , Oryza , Animals , Glucans/metabolism , Oryza/genetics , Oryza/metabolism , Poaceae
9.
J Plant Res ; 136(5): 743-753, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37233958

ABSTRACT

Seed germination, a vital process for plant growth and development, is regulated by ethylene. Previously, we showed that Tomato Ethylene Responsive Factor 1 (TERF1), an ethylene-responsive factor (ERF) transcription factor, could significantly promote seed germination by increasing glucose content. As glucose can function as a signaling molecule to regulate plant growth and development through HEXOKINASE 1 (HXK1), we aim to illustrate how TERF1 promotes seed germination through the HXK1-mediated signaling pathway. We showed that seeds overexpressing TERF1 exhibited more resistance to N-acetylglucosamine (NAG), an inhibitor of the HXK1- mediated signaling pathway. We identified genes regulated by TERF1 through HXK1 based on transcriptome analysis. Gene expression and phenotype analysis demonstrated that TERF1 repressed the ABA signaling pathway through HXK1, which promoted germination through activating the plasma membrane (PM) H+-ATPase. TERF1 also alleviated the endoplasmic reticulum (ER) stress to accelerate germination by maintaining reactive oxygen species (ROS) homeostasis through HXK1. Our findings provide new insights into the mechanism regulated by ethylene through the glucose-HXK1 signaling pathway during seed germination.


Subject(s)
Solanum lycopersicum , Transcription Factors , Transcription Factors/genetics , Germination/physiology , Hexokinase/genetics , Hexokinase/metabolism , Seeds , Gene Expression Regulation, Plant , Ethylenes/pharmacology , Signal Transduction , Glucose/metabolism , Abscisic Acid/metabolism
10.
Regul Toxicol Pharmacol ; 145: 105498, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778433

ABSTRACT

BIIB131, a small molecule, is currently in Phase 2 for the treatment of acute ischemic stroke. Safety and metabolism of BIIB131 were evaluated following intravenous administration to rats and monkeys. Exposure increased dose-proportionally in rats up to 60 mg/kg and more than dose-proportionally in monkeys at greater than 10 mg/kg accompanied by prolonged half-life and safety findings. The BIIB131 was poorly metabolized in microsomes with no inhibition of CYPs. BIIB131-glucuronide, formed by UGT1A1, accounted for 21.5% metabolism in human hepatocytes and 28-40% in rat bile. In rats, excretion was primarily via the bile. BIIB131 inhibited the hERG and Nav1.5 cardiac channels by 39% but showed no effect on cardiovascular parameters in monkeys. Toxicology findings were limited to reversable hematuria, changes in urinary parameters and local effects. A MTD of 30 mg/kg was established in monkeys, the most sensitive species, at total plasma Cmax and AUC of 6- and 14-fold, respectively, greater than the NOAEL. The Phase 1 study started with intravenous 0.05 mg/kg and ascended to 6.0 mg/kg which corresponded to safety margins of 147- to 0.9-fold (for Cmax) within the linear drug exposure. Thus, the preclinical profile of BIIB131 has been appropriately characterized and supports its further clinical development.


Subject(s)
Ischemic Stroke , Humans , Rats , Animals , Rats, Sprague-Dawley , Toxicokinetics , Ischemic Stroke/metabolism , Injections, Intravenous , Bile/metabolism
11.
Hemoglobin ; 47(2): 49-51, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37247201

ABSTRACT

Deletional α-thalassemia is characterized by reduced hemoglobin A2 and involves the deletion of a few nucleotides, which is a rare hereditary disease. However, the detection of rare mutations using commonly used genetic tests is highly challenging. In the present study, next-generation sequencing (NGS) was used to identify a novel 7-bp deletion α-thalassemia in one individual from a Chinese family. Hematological parameters of the family members were determined using an automated cell counter, and hemoglobin electrophoresis was performed using a capillary electrophoresis system. Subsequently, NGS was performed on the genomic DNA of the patient and her family members. The 7-bp deletion (named Hb Honghe [HBA1: c.401_407delGCACCGT]) of α-thalassemia in the α-globin gene was confirmed using Sanger sequencing. The patient's father was also a heterozygous carrier of HBA1: c.401_407delGCACCGT deletion, but not her mother or sister. The application of the combined molecular approach is essential for the accurate diagnosis of rare thalassemia. This study reports a novel case of α- thalassemia. The characterization of the mutation might provide new insights into genetic counseling and accurate diagnosis of thalassemia.


Subject(s)
alpha-Thalassemia , Humans , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics , alpha-Globins/genetics , Glycated Hemoglobin , East Asian People , Mutation , Multigene Family , Gene Deletion
12.
Molecules ; 28(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36838605

ABSTRACT

Therapeutic oligonucleotides, such as antisense oligonucleotide (ASO) and small interfering RNA (siRNA), are a new class of therapeutics rapidly growing in drug discovery and development. A sensitive and reliable method to quantify oligonucleotides in biological samples is critical to study their pharmacokinetic and pharmacodynamic properties. Hybridization LC-MS/MS was recently established as a highly sensitive and specific methodology for the quantification of single-stranded oligonucleotides, e.g., ASOs, in various biological matrices. However, there is no report of this methodology for the bioanalysis of double-stranded oligonucleotides (e.g., siRNA). In this work, we investigated hybridization LC-MS/MS methodology for the quantification of double-stranded oligonucleotides in biological samples using an siRNA compound, siRNA-01, as the test compound. The commonly used DNA capture probe and a new peptide nucleic acid (PNA) probe were compared for the hybridization extraction of siRNA-01 under different conditions. The PNA probe achieved better extraction recovery than the DNA probe, especially for high concentration samples, which may be due to its stronger hybridization affinity. The optimized hybridization method using the PNA probe was successfully qualified for the quantitation of siRNA-01 in monkey plasma, cerebrospinal fluid (CSF), and tissue homogenates over the range of 2.00-1000 ng/mL. This work is the first report of the hybridization LC-MS/MS methodology for the quantification of double-stranded oligonucleotides. The developed methodology will be applied to pharmacokinetic and toxicokinetic studies of siRNA-01. This novel methodology can also be used for the quantitative bioanalysis of other double-stranded oligonucleotides.


Subject(s)
Peptide Nucleic Acids , Tandem Mass Spectrometry , Chromatography, Liquid/methods , RNA, Small Interfering , Tandem Mass Spectrometry/methods , Nucleic Acid Hybridization/methods , Oligonucleotides/chemistry , Peptide Nucleic Acids/chemistry , DNA Probes
13.
BMC Nurs ; 22(1): 483, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114985

ABSTRACT

BACKGROUND: Ethical issues may pose challenges to nursing students entering clinical practice. Moral sensitivity can assist them in recognising existing moral situations and then taking adequate action. Identifying the variables associated with moral sensitivity may be useful in preparing to improve nursing students' moral sensitivity. OBJECTIVES: This study investigated empathy, emotional intelligence, and moral sensitivity in Chinese student nurses to explore the association among these three factors and to verify the mediating function of emotional intelligence in determining the connection between empathy and moral sensitivity. DESIGN: This study used a cross-sectional correlational design. SETTING AND PARTICIPANTS: Through convenience sampling, 239 fourth-year nursing undergraduates at a university in Western China were enrolled in this study. METHODS: Nursing students who volunteered to participate in the study completed self-reported scales on empathy, emotional intelligence, and moral sensitivity between September and October 2022. The potential mediating effect was explored using the Process Macro and bootstrap method. RESULTS: The nursing students' average scores were 39.62 ± 5.27 on moral sensitivity, 108.21 ± 15.49 on empathy, and 124.41 ± 13.66 on EI. Moral sensitivity was positively correlated with emotional intelligence (r = 0.454, p < 0.001) and empathy (r = 0.545, p < 0.001). Furthermore, empathy exerted a substantial direct effect on nursing students' moral sensitivity (B = 0.1424, p < 0.001). Emotional intelligence could mediate the indirect path from empathy to moral sensitivity. (B = 0.0372, p < 0.001). CONCLUSION: Emotional intelligence mediated the association between empathy and moral sensitivity. Thus, educational activities and programmes placing an emphasis on empathy and emotional intelligence may offer an alternative way to promote moral sensitivity in Chinese student nurses. IMPLICATIONS: Nursing educators can organise programmes to improve nursing students' emotional competence and professional values. Early exposure to clinical practice benefits nursing students a lot in terms of building interactions with patients and increasing emotional resonance. In addition, nursing educators should develop situational teaching in nursing ethics courses to help students cope with ethical issues.

14.
Article in English | MEDLINE | ID: mdl-38037664

ABSTRACT

Nanoparticles (NPs) have been widely used in different areas, including consumer products and medicine. In terms of biomedical applications, NPs or NP-based drug formulations have been extensively investigated for cancer diagnostics and therapy in preclinical studies, but the clinical translation rate is low. Therefore, a thorough and comprehensive understanding of the pharmacokinetics of NPs, especially in drug delivery efficiency to the target therapeutic tissue tumor, is important to design more effective nanomedicines and for proper assessment of the safety and risk of NPs. This review article focuses on the pharmacokinetics of both organic and inorganic NPs and their tumor delivery efficiencies, as well as the associated mechanisms involved. We discuss the absorption, distribution, metabolism, and excretion (ADME) processes following different routes of exposure and the mechanisms involved. Many physicochemical properties and experimental factors, including particle type, size, surface charge, zeta potential, surface coating, protein binding, dose, exposure route, species, cancer type, and tumor size can affect NP pharmacokinetics and tumor delivery efficiency. NPs can be absorbed with varying degrees following different exposure routes and mainly accumulate in liver and spleen, but also distribute to other tissues such as heart, lung, kidney and tumor tissues; and subsequently get metabolized and/or excreted mainly through hepatobiliary and renal elimination. Passive and active targeting strategies are the two major mechanisms of tumor delivery, while active targeting tends to have less toxicity and higher delivery efficiency through direct interaction between ligands and receptors. We also discuss challenges and perspectives remaining in the field of pharmacokinetics and tumor delivery efficiency of NPs.

15.
Environ Monit Assess ; 195(10): 1235, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37731061

ABSTRACT

Triadimefon is a typical systemic fungicide that is widely used in the management of powdery mildew, rust disease, and southern blight. In this study, we measured fungicide residue to profile its absorption, translocation, and accumulation in three representative vegetable crops (Pak choi, cucumber, and pepper) after over-application. The fungicides were applied through entire-plant spraying (EPS), root-irrigation (RI), and middle-leaf-daubing (MLD). The half-life of triadimefon depends on the application method and plant species. In EPS, the half-life was 5.42 days (Pak choi), 6.86 days (cucumber), and 6.73 days (pepper), while in RI it was 4.39 days (Pak choi), 6.30 days (cucumber), and 5.98 days (pepper). In the EPS treatment, triadimefon is translocated both upward/outside and downward/inner-side from the daubed leaves in all the three vegetable crops. The transfer amount to each organ reached a peak on the 2nd day after fungicide application. The mesophyll of Pak choi exhibited a higher fungicide deposition compared to the petiole. In cucumber and pepper, the leaves demonstrated the highest accumulation of triadimefon (approximately 0.3-0.5 mg·kg-1), followed by stems. Roots and fruits displayed the lowest levels of triadimefon accumulation. Furthermore, triadimefon was found to have an impact on chlorophyll content, root activity, as well as the activity of superoxide dismutase and catalase in Pak choi, indicating its potential as a plant growth regulator. These aforementioned studies provide novel insights for the safe and efficient application of triadimefon in the production of Pak choi, cucumber, and pepper.


Subject(s)
Brassica rapa , Capsicum , Cucumis sativus , Fungicides, Industrial , Fungicides, Industrial/toxicity , Environmental Monitoring , Vegetables , Crops, Agricultural
16.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2360-2367, 2023 May.
Article in Zh | MEDLINE | ID: mdl-37282865

ABSTRACT

This study explored the effect and underlying mechanism of Stellera chamaejasme extract(SCE) on multidrug resistance of breast cancer. The chemotherapy-sensitive breast cancer cell line MCF-7 and adriamycin(ADR)-resistant cell line MCF-7/ADR were used as experimental subjects. MTT assay was used to detect cell proliferation activity. Pi staining was used to detect the cell cycle. 4',6-Diamidino-2-phenylindole, dihydrochloride(DAPI) staining and flow cytometry were used to detect apoptosis. Dansylcadaverine(MDC) staining and GFP-LC3B-Mcherry adenovirus transfection were used to detect autophagy. The protein expression of Bcl-2, Bax, caspase-9, caspase-3, LC3B, p62, and Beclin-1 was detected by Western blot. The results showed that SCE could significantly inhibit the proliferation of both sensitive and resistant breast cancer cell lines. The drug resistance factor was 0.53, which was significantly lower than 59 of ADR. Meanwhile, the proportion of sensitive/resistant cells in the G_0/G_1 phase increased significantly after SCE treatment. In addition, DAPI staining showed that a series of apoptosis phenomena such as nuclear pyknosis, staining deepening, and nuclear fragmentation appeared in sensitive/resistant cell lines after SCE administration. Moreover, the results of flow cytometry double staining showed that the proportion of apoptotic cells in sensitive/resistant cell lines increased significantly after SCE administration. Besides, Western blot showed that the protein expression levels of caspase-3, caspase-9, and Bcl-2 significantly decreased and the expression level of Bax protein significantly increased in both breast cancer cell lines after SCE administration. Furthermore, SCE could also increase the positive fluorescent spots after MDC staining and yellow fluorescent spots after GFP-LC3B-mcherry transfection, and up-regulate the expression levels of autophagy-related proteins LC3B-Ⅱ, p62, and Beclin-1 in breast cancer cells. In summary, SCE may play the role of anti-multidrug resistance by blocking the cell cycle of breast cancer multidrug-resistant cells, blocking autophagy flow, and ultimately interfering with the apoptosis resistance of drug-resistant cells.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Beclin-1/pharmacology , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Cell Proliferation
17.
Oncologist ; 27(6): e463-e470, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35348754

ABSTRACT

BACKGROUND: The prognosis of patients with metastatic malignant melanoma is very poor and partly due to resistance to conventional chemotherapies. The study's objectives were to assess the activity and tolerability of apatinib, an oral small molecule anti-angiogenesis inhibitor, in patients with recurrent advanced melanoma. METHODS: This was a single-arm, single-center phase II trial. The primary endpoint was progression-free survival (PFS) and the secondary endpoints were objective response rate (ORR), disease control rate (DCR), and overall survival (OS). Eligible patients had received at least one first-line therapy for advanced melanoma and experienced recurrence. Apatinib (500 mg) was orally administered daily. RESULTS: Fifteen patients (V660E BRAF status: 2 mutation, 2 unknown, 11 wild type) were included in the analysis. The median PFS was 4.0 months. There were two major objective responses, for a 13.3% response rate. Eleven patients had stable disease, with a DCR of 86.7%. The median OS was 12.0 months. The most common treatment-related adverse events of any grade were hypertension (80.0%), mucositis oral (33.3%), hand-foot skin reaction (26.7%), and liver function abnormalities, hemorrhage, diarrhea (each 20%). The only grade ≥3 treatment-related adverse effects that occurred in 2 patients was hypertension (6.7%) and mucositis (6.7%). No treatment-related deaths occurred. CONCLUSION: Apatinib showed antitumor activity as a second- or above-line therapy in patients with malignant melanoma. The toxicity was manageable. CLINICALTRIALS.GOV IDENTIFIER: NCT03383237.


Subject(s)
Melanoma , Neoplasm Recurrence, Local , Pyridines , Antineoplastic Agents/therapeutic use , Humans , Hypertension/chemically induced , Melanoma/drug therapy , Mucositis/chemically induced , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Pyridines/adverse effects
18.
Biochem Biophys Res Commun ; 623: 104-110, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35921703

ABSTRACT

Protecting dopaminergic neurons is a key approach in the prevention of Parkinson's disease (PD). Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is widely distributed in the mammalian nervous system. In this study, we designed experiments to investigate the effect and mechanisms of TRPV1 against DA neurons damage of PD. Our results showed that trpv1-deficient mice showed a significant loss of TH + neurons than PD mice after MPTP intraperitoneal injection, in addition, a significant decline in motor function was observed in trpv1-deficient mice versus the MPTP model. In addition, our study indicated that GDF11 overexpression inhibited MPP + - induced oxidative stress, cell senescence, and apoptosis in neurons. Results also showed that TRPV1 prevented the down-regulation of GDF11 expression in PD model, gdf11 knockdown blocks the effects of TRPV1 on the antioxidant, antiaging, and antiapoptotic activities of dopaminergic neurons. Consequently, our findings indicate that TRPV1 protects dopaminergic neurons from injury by promoting GDF11 expression in PD model.


Subject(s)
Neuroprotective Agents , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Bone Morphogenetic Proteins/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism , Growth Differentiation Factors/genetics , Mammals/metabolism , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Parkinson Disease/genetics , Parkinson Disease/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
19.
Drug Metab Dispos ; 50(3): 268-276, 2022 03.
Article in English | MEDLINE | ID: mdl-34921096

ABSTRACT

The development of quantitative models for prediction of drug pharmacokinetics based on in vitro data has transformed early drug discovery. Drug unbound fraction (ƒu) characterization is a key consideration in pharmacokinetic and pharmacodynamic (PK/PD) modeling, assuming only unbound drug can interact with the target, and therefore has direct implications in the efficacy and potential toxicity of the drug. The current study describes the implementation of a hybridization liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform for the direct quantitation of antisense oligonucleotide (ASO) ƒu The method provides substantial improvements, including minimal matrix effects and high specificity when compared with previously used oligonucleotide ƒu detection methods such as ligand binding assays or liquid scintillation. The hybridization LC-MS/MS platform was integrated with ultracentrifugation, ultrafiltration, and equilibrium dialysis, and method performance for each technique was evaluated. Although ASO protein binding has been previously characterized in plasma, there were no studies that quantitated ASO ƒu in brain or cerebral spinal fluid (CSF). As ASOs continue to undergo clinical trials for neurologic and neuromuscular indications, ƒu characterization in brain and CSF can provide invaluable information about ASO distribution and target engagement in the central nervous system, therefore providing support for in vivo PK/PD data characterization. SIGNIFICANCE STATEMENT: A novel hybridization LC-MS/MS-based approach was successfully developed for the determination of ASO in vitro protein binding in plasma, and for the first time brain and CSF. Ultrafiltration, equilibrium dialysis, and ultracentrifugation were assessed for the separation of unbound ASO from biological matrices. The hybridization LC-MS/MS platform provided unique advantages, including minimal matrix effects and high specificity, compared with traditional ligand binding assays or liquid scintillation approaches, which enabled efficient and reliable in vitro protein binding assay.


Subject(s)
Oligonucleotides, Antisense , Tandem Mass Spectrometry , Brain , Chromatography, Liquid/methods , Ligands , Oligonucleotides, Antisense/pharmacokinetics , Protein Binding , Reproducibility of Results , Tandem Mass Spectrometry/methods
20.
Nanotechnology ; 33(42)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35772308

ABSTRACT

Recent advances in the growth of III-V semiconductor nanowires (NWs) hold great promise for nanoscale optoelectronic device applications. It is established that a small amount of nitrogen (N) incorporation in III-V semiconductor NWs can effectively red-shift their wavelength of operation and tailor their electronic properties for specific applications. However, understanding the impact of N incorporation on non-equilibrium charge carrier dynamics and transport in semiconducting NWs is critical in achieving efficient semiconducting NW devices. In this work, ultrafast optical pump-terahertz probe spectroscopy has been used to study non-equilibrium carrier dynamics and transport in Te-doped GaAsSb and dilute nitride GaAsSbN NWs, with the goal of correlating these results with electrical characterization of their equilibrium photo-response under bias and low-frequency noise characteristics. Nitrogen incorporation in GaAsSb NWs led to a significant increase in the carrier scattering rate, resulting in a severe reduction in carrier mobility. Carrier recombination lifetimes of 33 ± 1 picoseconds (ps) and 147 ± 3 ps in GaAsSbN and GaAsSb NWs, respectively, were measured. The reduction in the carrier lifetime and photoinduced optical conductivities are due to the presence of N-induced defects, leading to deterioration in the electrical and optical characteristics of dilute nitride NWs relative to the non-nitride NWs. Finally, we observed a very fast rise time of âˆ¼2 ps for both NW materials, directly impacting their potential use as high-speed photodetectors.

SELECTION OF CITATIONS
SEARCH DETAIL