Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 19(3): e1011240, 2023 03.
Article in English | MEDLINE | ID: mdl-36961850

ABSTRACT

One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Natural Killer T-Cells , Humans , Animals , Mice , Immune Evasion , SARS-CoV-2
2.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
3.
Angew Chem Int Ed Engl ; 63(2): e202314304, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38009446

ABSTRACT

Bridged benzazepine scaffolds, possessing unique structural and physicochemical activities, are widespread in various natural products and drugs. The construction of these skeletons often requires elaborate synthetic effort with low efficiency. Herein, we develop a simple and divergent approach for constructing various bridged benzazepines by a photocatalytic intermolecular dearomatization of naphthalene derivatives with readily available α-amino acids. The bridged motif is created via a cascade sequence involving photocatalytic 1,4-hydroaminoalkylation, alkene isomerization and cyclization. Interestingly, the diastereoselectivity can be regulated through different reaction modes in the cyclization step. Moreover, aminohydroxylation and its further bromination have also been demonstrated to access highly functionalized bridged benzazepines. Preliminary mechanistic studies have been performed to get insights into the mechanism. This method provides a divergent synthetic approach for construction of highly functionalized bridged benzazepines, which have been otherwise difficult to access.

4.
J Am Chem Soc ; 145(42): 23385-23394, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37824756

ABSTRACT

A mild and regiodivergent aminoalkylation of unactivated alkyl halides is disclosed via a dual photoredox/nickel catalysis. Bipyridyl-type ligands without an ortho-substituent control the site-selective coupling at the original position, while ortho-disubstituted ligands tune the site-selectivity at a remote, unprefunctionalized position. Mechanistic studies combined with DFT calculations give insight into the mechanism and the origins of the ligand-controlled regioselectivity. Notably, this redox-neutral, regiodivergent alkyl-alkyl coupling features mild conditions, broad substrate scope for both alkyl coupling partners, and excellent site-selectivity and offers a straightforward way for α-alkylation of tertiary amines to synthesize structurally diverse alkylamines and value-added amino acid derivatives.

5.
J Med Virol ; 95(2): e28472, 2023 02.
Article in English | MEDLINE | ID: mdl-36606611

ABSTRACT

The choroid plexus (ChP) is the source of cerebrospinal fluid (CSF). The ChP-CSF system not only provides the necessary cushion for the brain but also works as a sink for waste clearance. During sepsis, pathogens and host immune cells can weaken the ChP barrier and enter the brain, causing cerebral dysfunctions known as sepsis-associated encephalophagy. Here, we used human ChP organoid (ChPO) to model herpes simplex virus type 1 (HSV-1) infection and found ChP epithelial cells were highly susceptible to HSV-1. Since the current ChPO model lacks a functional innate immune component, particularly microglia, we next developed a new microglia-containing ChPO model, and found microglia could effectively limit HSV-1 infection and protect epithelial barrier in ChPOs. Furthermore, we found the innate immune cyclic GMP-AMP synthase (cGAS)-STING pathway and its downstream interferon response were essential, as cGAS inhibitor RU.512 or STING inhibitor H-151 abolished microglia antiviral function and worsened ChP barrier in organoids. These results together indicated that cGAS-STING pathway coordinates antiviral response in ChP and contributes to treating sepsis or related neurological conditions.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Humans , Microglia/metabolism , Choroid Plexus/metabolism , Signal Transduction , Immunity, Innate , Nucleotidyltransferases/metabolism , Organoids
6.
BMC Cardiovasc Disord ; 23(1): 173, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997869

ABSTRACT

BACKGROUND: This study aimed to investigate the correlation between the high-risk characteristics of high-resolution MRI carotid vulnerable plaques and the clinical risk factors and concomitant acute cerebral infarction (ACI). METHODS: Forty-five patients diagnosed with a single vulnerable carotid plaque by MRI were divided into two groups based on whether they had ipsilateral ACI. The clinical risk factors and the observation values or frequency of occurrence of high-risk MRI phenotypes of plaque volume, LRNC, IPH and ulcer were statistically compared between the two groups. RESULTS: A total of 45 vulnerable carotid artery plaques were found in 45 patients, 23 patients with ACI and 22 patients without ACI. There were no significant differences in age, sex, smoking, serum TC, TG and LDL between the two groups (all P > 0.05), but the ACI group had significantly more patients with hypertension (P < 0.05) and the without ACI group coronary heart disease (P < 0.05). The volume of vulnerable carotid plaque in the group with ACI (1004.19 ± 663.57 mm3) was significantly larger than that in the group without ACI (487.21 ± 238.64 mm3) (P < 0.05). The phenotype of vulnerable carotid artery plaque was 13 cases of LRNC, 8 cases of LRNC + IPH, 5 cases of LRNC + Ulcer, and 19 cases of LRNC + IPH + Ulcer. There was no significant difference in this distribution between the two groups (all P > 0.05) with the exception of LRNC + IPH + Ulcer. The 14 cases of LRNC + IPH + LRNC + IPH + Ulcer (60.87%) in the group with ACI and was significantly greater than the 5 (22.73%) in patients without ACI (P < 0.05). CONCLUSION: It is preliminarily thought that hypertension is the main clinical risk factor for vulnerable carotid plaques with ACI and the combination of plaque volume with vulnerable carotid plaque and LRNC + IPH + Ulcer is a high-risk factor for complicated ACI. It has high clinical therapeutic value due to the accurate diagnosis of responsible vessels and plaques with high-resolution MRI.


Subject(s)
Brain Ischemia , Carotid Stenosis , Hypertension , Plaque, Atherosclerotic , Stroke , Humans , Ulcer/complications , Stroke/etiology , Carotid Arteries/diagnostic imaging , Magnetic Resonance Imaging/adverse effects , Brain Ischemia/complications , Plaque, Atherosclerotic/complications , Risk Factors , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Acute Disease , Cerebral Infarction/etiology , Cerebral Infarction/complications , Hypertension/complications , Hypertension/diagnosis
7.
J Am Chem Soc ; 144(39): 17776-17782, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36136777

ABSTRACT

A mild and site-selective hydroaminoalkylation of activated and unactivated alkenes via dual photoredox/Ni catalysis is developed. This dual catalytic strategy enables exclusive access to α-selective products, which is complementary to previously reported photocatalytic hydroaminoalkylation of activated alkenes that provides the ß-selective products. The chain-walking of a Ni-H intermediate toward a carbonyl allows for the hydroaminoalkylation of unactivated alkenes at remote sp3 C-H sites. This method tolerates a broad substrate scope of both amines and alkenes as well as providing a streamlined synthesis of value-added ß-amino acid derivatives from readily available starting materials.


Subject(s)
Alkenes , Nickel , Alkenes/chemistry , Amines/chemistry , Amino Acids , Catalysis , Nickel/chemistry
8.
Opt Lett ; 47(2): 329-332, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030599

ABSTRACT

Reconfigurable photonic devices are important constituents for future optical integrated circuits, where electro-optic manipulation of the light field in a lithium niobate (LN) waveguide is one of the promising solutions. Herein, we demonstrate a paradigm shift of the beam steering mechanism where reconfigurable beam steering is enabled by the wavefront shaping technology. Furthermore, this strategy is fully compatible with the electro-optic tuning mechanism of the LN multimode waveguide, where microstructured serrated array electrodes are employed to fine tune the output beam upon its reconfigurable output position. Our results provide new, to the best of our knowledge, insight for molding the flow of light in multimode waveguides and shed new light on beam steering photonic devices.

9.
Angew Chem Int Ed Engl ; 61(3): e202114731, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34783143

ABSTRACT

A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0 /NiI /NiIII pathway for ketone formation.

10.
Opt Lett ; 46(17): 4156-4159, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469963

ABSTRACT

Perfect optical vortices enable the unprecedented optical multiplexing utilizing orbital angular momentum of light, which, however, suffer from distortion when they propagate in inhomogeneous media. Herein, we report on the experimental demonstration of perfect optical vortice generation through strongly scattering media. The transmission-matrix-based point-spread-function engineering is applied to encode the targeted mask in the Fourier domain before focusing. We experimentally demonstrate the perfect optical vortice generation either through a multimode fiber or a ground glass, where the numerical results agree well with the measured one. Our results might facilitate the manipulation of orbital angular momentum of light through disordered scattering media and shed new light on the optical multiplexing utilizing perfect optical vortices.

11.
Chemistry ; 27(60): 14836-14840, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34390036

ABSTRACT

An efficient electrophilic N-cyanation of amines with a stable and less-toxic cyanobenziodoxole reagent towards the synthesis of cyanamides is disclosed. This synthetically practicable strategy allows the construction of a wide variety of cyanamides under very mild and simple conditions with a broad functional group compatibility, and showcases a huge potential in late-stage modification of complex molecules.


Subject(s)
Amines , Catalysis , Indicators and Reagents
12.
J Immunol ; 203(4): 864-872, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31243090

ABSTRACT

Cyclooxygenase (COX)-1, one of the critical enzymes required for the conversion of arachidonic acid to PGs, has been demonstrated to play an important role not only in the cardiovascular system but also in the immune system. COX-1 has been found to regulate early B cell differentiation, germinal center formation, and Ab production of B cells. However, the underlying mechanisms of COX-1-mediated B cell activation remains not fully understood. In this study, we reported that COX-1 is a potential regulator for the development of follicular Th (TFH) cells. COX-1-deficient (COX-1-/- ) mice displayed a significant reduction of TFH cells upon influenza infection or immunization with keyhole limpet hemocyanin, which led to a severe impairment of germinal center responses. We further demonstrated that COX-1-derived PGE2, via binding with its receptors EP2/EP4, represents the underlying mechanism. The administration of EP2/EP4 agonists or PGE2 almost completely rescued the defective TFH cell generation in COX-1-/- mice. Taken together, our observations indicate that COX-1 plays an important role in the development of TFH cells.


Subject(s)
Cyclooxygenase 1/immunology , Dinoprostone/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Differentiation/immunology , Germinal Center/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/cytology
13.
J Med Virol ; 92(9): 1615-1628, 2020 09.
Article in English | MEDLINE | ID: mdl-32356908

ABSTRACT

We have applied mathematical modeling to investigate the infections of the ongoing coronavirus disease-2019 (COVID-19) pandemic caused by SARS-CoV-2 virus. We first validated our model using the well-studied influenza viruses and then compared the pathogenesis processes between the two viruses. The interaction between host innate and adaptive immune responses was found to be a potential cause for the higher severity and mortality in COVID-19 patients. Specifically, the timing mismatch between the two immune responses has a major impact on disease progression. The adaptive immune response of the COVID-19 patients is more likely to come before the peak of viral load, while the opposite is true for influenza patients. This difference in timing causes delayed depletion of vulnerable epithelial cells in the lungs in COVID-19 patients while enhancing viral clearance in influenza patients. Stronger adaptive immunity in COVID-19 patients can potentially lead to longer recovery time and more severe secondary complications. Based on our analysis, delaying the onset of adaptive immune responses during the early phase of infections may be a potential treatment option for high-risk COVID-19 patients. Suppressing the adaptive immune response temporarily and avoiding its interference with the innate immune response may allow the innate immunity to more efficiently clear the virus.


Subject(s)
Adaptive Immunity , COVID-19/etiology , Disease Susceptibility , Host-Pathogen Interactions/immunology , Immunity, Innate , Models, Theoretical , SARS-CoV-2/immunology , Algorithms , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Influenza, Human/immunology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
14.
Nano Lett ; 19(8): 5469-5475, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31251065

ABSTRACT

Self-assembling protein nanoparticles are extensively and increasingly engineered to integrate adjuvants with antigens to elicit potent and long-term immunity due to uniform architecture, inherent biocompatibility, and excellent plasticity. However, functionalization of nanoparticles by surface tailoring has two common problems: (1) disassembly caused by loaded cargoes; and (2) an adjuvant that is inconvenient to co-deliver with an antigen by genetic fusion. Here, we report an intein-mediated trans-splicing approach that overcomes the detrimental effects of loaded proteins on ferritin nanoparticle stability and allows concurrent display of antigen and adjuvant in a facile, efficient, and site-specific manner. An immunization study with an epitope-based model antigen reveals that antigen and adjuvant co-delivery nanoparticles induce a more potent protective immunity than other formulations do. Our results demonstrate that protein engineering represents an intriguing approach for antigen/adjuvant co-delivery to potentiate antigen-associated immune responses.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens/administration & dosage , Drug Carriers/chemistry , Ferritins/chemistry , Inteins , Nanoparticles/chemistry , Animals , Mice, Inbred ICR , Models, Molecular , Trans-Splicing
15.
Angew Chem Int Ed Engl ; 59(41): 17910-17916, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32633062

ABSTRACT

A highly chemo- and regioselective intermolecular 1,2-aryl-aminoalkylation of alkenes by photoredox/nickel dual catalysis is described here. This three-component conjunctive cross-coupling is highlighted by its first application of primary alkyl radicals, which were not compatible in previous reports. The readily prepared α-silyl amines could be transferred to α-amino radicals by photo-induced single electron transfer step. The radical addition/cross-coupling cascade reaction proceeds under mild, base-free and redox-neutral conditions with good functional group tolerance, and importantly, provides an efficient and concise method for the synthesis of structurally valuable α-aryl substituted γ-amino acid derivatives motifs.

16.
J Virol ; 92(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30185591

ABSTRACT

Herpes simplex virus 1 (HSV-1) is one of the most prevalent herpesviruses in humans and represents a constant health threat to aged and immunocompromised populations. How HSV-1 interacts with the host immune system to efficiently establish infection and latency is only partially known. CD1d-restricted NKT cells are a critical arm of the host innate immune system and play potent roles in anti-infection and antitumor immune responses. We discovered previously that upon infection, HSV-1 rapidly and efficiently downregulates CD1d expression on the cell surface and suppresses the function of NKT cells. Furthermore, we identified the viral serine/threonine protein kinase US3 as a major viral factor downregulating CD1d during infection. Interestingly, neither HSV-1 nor its US3 protein efficiently inhibits mouse CD1d expression, suggesting that HSV-1 has coevolved with the human immune system to specifically suppress human CD1d (hCD1d) and NKT cell function for its pathogenesis. This is consistent with the fact that wild-type mice are mostly resistant to HSV-1 infection. On the other hand, in vivo infection of CD1d-humanized mice (hCD1d knock-in mice) showed that HSV-1 can indeed evade hCD1d function and establish infection in these mice. We also report here that US3-deficient viruses cannot efficiently infect hCD1d knock-in mice but infect mice lacking all NKT cells at a higher efficiency. Together, these studies supported HSV-1 evasion of human CD1d and NKT cell function as an important pathogenic factor for the virus. Our results also validated the potent roles of NKT cells in antiherpesvirus immune responses and pointed to the potential of NKT cell ligands as adjuvants for future vaccine development.IMPORTANCE Herpes simplex virus 1 (HSV-1) is among the most common human pathogens. Little is known regarding the exact mechanism by which this virus evades the human immune system, particularly the innate immune system. We reported previously that HSV-1 employs its protein kinase US3 to modulate the expression of the key antigen-presenting molecule, CD1d, so as to evade the antiviral function of NKT cells. Here we demonstrated that the virus has coevolved with the human CD1d and NKT cell system and that NKT cells indeed play potent roles in anti-HSV immune responses. These studies point to the great potential of exploring NKT cell ligands as adjuvants for HSV vaccines.


Subject(s)
Antigen Presentation/immunology , Antigens, CD1d/physiology , Dendritic Cells/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Natural Killer T-Cells/immunology , Animals , Down-Regulation , Female , Herpes Simplex/immunology , Herpes Simplex/pathology , Host-Pathogen Interactions , Humans , Immune Evasion , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Virulence
17.
Angew Chem Int Ed Engl ; 58(11): 3579-3583, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30624005

ABSTRACT

A straightforward gram-scale preparation of cyclohexa-1,4-diene-based hydrogen cyanide (HCN) surrogates is reported. These are bench-stable but formally release HCN and rearomatize when treated with Lewis acids. For BCl3 , the formation of the isocyanide adduct [(CN)BCl3 ]- and the corresponding Wheland complex was verified by mass spectrometry. In the presence of 1,1-di- and trisubstituted alkenes, transfer of HCN from the surrogate to the C-C double bond occurs, affording highly substituted nitriles with Markovnikov selectivity. The success of this transfer hydrocyanation depends on the Lewis acid employed; catalytic amounts of BCl3 and (C6 F5 )2 BCl are shown to be effective while B(C6 F5 )3 and BF3 ⋅OEt2 are not.

18.
Chemistry ; 24(72): 19175-19178, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30431674

ABSTRACT

A one-pot reaction that directly converts dihydrosilanes into silyl ethers of tertiary silanes is reported. Under palladium catalysis, one Si-H bond of the dihydrosilane formally engages in C(sp3 )-Si bond formation with a vinyl iodide while the other Si-H bond is transformed into a silyl iodide that undergoes facile alcoholysis with an alcohol. The C-C double bond is reduced in that process. This three-component reaction provides in a single synthetic operation an access to silyl ethers of functionalized and hindered alcohols. Several of those would otherwise be difficult to make but the intermediacy of a highly reactive silyl iodide even allows for tert-butanol to react at room temperature.

19.
Immunity ; 30(6): 888-98, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19538930

ABSTRACT

CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type cytokines. We analyzed presentation of NKT cell activating alpha galactosylceramide (alphaGalCer) analogs that give predominantly Th2 cell-type cytokine responses to determine how ligand structure controls the outcome of NKT cell activation. Using a monoclonal antibody specific for alphaGalCer-CD1d complexes to visualize and quantitate glycolipid presentation, we found that Th2 cell-type cytokine-biasing ligands were characterized by rapid and direct loading of cell-surface CD1d proteins. Complexes formed by association of these Th2 cell-type cytokine-biasing alphaGalCer analogs with CD1d showed a distinctive exclusion from ganglioside-enriched, detergent-resistant plasma membrane microdomains of antigen-presenting cells. These findings help to explain how subtle alterations in glycolipid ligand structure can control the balance of proinflammatory and anti-inflammatory activities of NKT cells.


Subject(s)
Antigen-Presenting Cells/immunology , Antigens, CD1d/immunology , Galactosylceramides/immunology , Lymphocyte Activation/immunology , Natural Killer T-Cells/immunology , Th2 Cells/immunology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism , Antigens, CD1d/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Female , Galactosylceramides/pharmacology , Humans , Kinetics , Lymphocyte Activation/drug effects , Membrane Microdomains/immunology , Membrane Microdomains/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Natural Killer T-Cells/drug effects , Th2 Cells/drug effects
20.
J Immunol ; 195(3): 924-33, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26078271

ABSTRACT

In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production.


Subject(s)
Galactosylceramides/immunology , Glycosphingolipids/immunology , Interferon-gamma/biosynthesis , Lymphocyte Activation/immunology , Natural Killer T-Cells/immunology , Th1 Cells/immunology , Animals , Antigens, CD1d/immunology , Binding Sites/immunology , Cells, Cultured , Dendritic Cells/immunology , Galactosylceramides/chemistry , Glycosphingolipids/chemistry , Humans , Interleukin-10/biosynthesis , Interleukin-12/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding/immunology
SELECTION OF CITATIONS
SEARCH DETAIL